Characterization of <i>Drosophila fruitless‐gal4</i> transgenes reveals expression in male‐specific <i>fruitless</i> neurons and innervation of male reproductive structures

Journal of Comparative Neurology - Tập 475 Số 2 - Trang 270-287 - 2004
Jean‐Christophe Billeter1, Stephen F. Goodwin1
1Institute of Biomedical and Life Sciences, Division of Molecular Genetics, University of Glasgow, G11 6NU Glasgow, United Kingdom.

Tóm tắt

AbstractThe fruitless (fru) gene acts in the central nervous system (CNS) of Drosophila melanogaster to establish male sexual behavior. Genetic dissection of the locus has shown that one of the fru gene's promoter, P1, controls the spatial and temporal expression of male‐specific FruM proteins critical to determining stereotypical male sexual behavior. By using the Gal4‐expression system, we show that a 16‐kb fragment of the fru P1 promoter's 5′ regulatory region drives the expression of Gal4 in a subset of FruM‐expressing neurons within both the pupal and adult CNS. Colocalization of FruM and a Gal4‐responsive reporter shows that the fru(P1)‐gal4 fusion construct generates expression in both previously characterized FruM‐expressing neurons as well as within cells of both the CNS and the peripheral nervous system that have not been demonstrated as FruM‐expressing. Gal4‐expressing neurons are shown to innervate abdominal organs directly relevant to fru function; specifically, the muscle of Lawrence (MOL) and the male internal reproductive organs. Innervations of the latter are shown to originate from identified FruM‐serotonergic neurons. Furthermore, we show that the MOL neuromuscular junction is sexually dimorphic. Finally, we describe Gal4 expression in neurites innervating male reproductive structures that are hypothesized to be targets of fru function. Isolation of the regulatory sequences controlling the expression of fru in the CNS, therefore, provides a potent tool for the manipulation of FruM‐expressing neurons and for understanding the cellular basis of Drosophila reproductive behavior. J. Comp. Neurol. 475:270–287, 2004. © 2004 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

Anand A, 2001, Molecular genetic dissection of the sex‐specific and vital functions of the Drosophila melanogaster sex determination gene fruitless, Genetics, 158, 1569, 10.1093/genetics/158.4.1569

Bairati A, 1968, Structure and ultrastructure of the male reproductive system in Drosophila melanogaster Meig.: 2. The genital duct and accessory glands, Monitore Zool Ital, 2, 105

10.1016/S0092-8674(01)00293-8

10.2144/00294bm10

10.1016/S0003-3472(69)80023-0

10.1016/S0065-2660(02)47003-4

10.1242/dev.00157

10.1016/0959-4388(95)80061-1

10.1242/dev.118.2.401

10.1101/gad.924301

10.1016/S0896-6273(03)00542-7

Bryant PJ, 1978, The genetics and biology of Drosophila melanogaster, 229

10.1002/neu.10126

Castrillon DH, 1993, Toward a molecular genetic analysis of spermatogenesis in Drosophila melanogaster: characterization of male‐sterile mutants generated by single P‐element mutagenesis, Genetics, 153, 489, 10.1093/genetics/135.2.489

10.1016/S0301-0082(00)00051-4

10.1242/dev.121.8.2549

10.1101/gad.1010302

10.1126/science.2892267

10.1002/neu.10196

10.1016/S0959-4388(99)80058-0

Echelard Y, 1994, Cis‐acting regulatory sequences governing Wnt‐1 expression in the developing mouse CNS, Development, 120, 2213, 10.1242/dev.120.8.2213

Emery P, 1998, CRY, a Drosophila clock and light‐regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity, Cell, 25, 669, 10.1016/S0092-8674(00)81637-2

10.1111/j.1365-3032.1978.tb00129.x

10.1523/JNEUROSCI.12-09-03321.1992

Ferris GF, 1950, Biology of Drosophila, 368

10.1073/pnas.94.3.913

Gailey DA, 1989, Behavior and cytogenetics of fruitless in Drosophila melanogaster; different courtship defects caused by separate, closely linked lesions, Genetics, 121, 773, 10.1093/genetics/121.4.773

Gailey DA, 1991, Elements of the fruitless locus regulate development of the Muscle of Lawrence, a male‐specific structure in the abdomen of Drosophila melanogaster adults, Development, 113, 879, 10.1242/dev.113.3.879

10.1093/genetics/154.2.725

10.1146/annurev.genet.34.1.205

10.1128/MCB.18.1.450

10.1126/science.287.5461.2271

10.1002/(SICI)1096-9861(20000619)422:1<66::AID-CNE5>3.0.CO;2-2

10.1002/cne.910060302

10.1128/MCB.20.13.4754-4764.2000

10.1016/0092-8674(86)90480-0

Lee G, 2001, Abnormalities of male‐specific FRU protein and serotonin expression in the CNS of fruitless mutants in Drosophila, J Neurosci, 21, 513, 10.1523/JNEUROSCI.21-02-00513.2001

10.1016/S0896-6273(00)80701-1

10.1002/1097-4695(20000615)43:4<404::AID-NEU8>3.0.CO;2-D

10.1002/neu.1021

Littleton JT, 1993, Expression of synaptotagmin in Drosophila reveals transport and localisation of synaptic vesicles to the synapse, Development, 118, 1077, 10.1242/dev.118.4.1077

Manning A, 1959, The sexual isolation between Drosophila melanogaster and Drosophila simulans, Anim Behav, 15, 239

10.1016/S0896-6273(00)81043-0

10.1016/S0960-9822(00)00860-5

Miller A, 1950, Biology of Drosophila, 420

10.1016/0020-7322(83)90023-5

10.1016/0896-6273(95)90064-0

10.1016/0012-1606(89)90241-8

10.1016/S0092-8674(00)81802-4

Sandrelli F, 2001, Molecular dissection of the 5′ region of non‐on‐transientA of Drosophila melanogaster reveals cis‐regulation by adjacent dGpi1 sequences, Genetics, 157, 765, 10.1093/genetics/157.2.765

10.1073/pnas.76.7.3430

10.1038/35098592

Song H‐J, 2002, The fruitless gene is required for the proper formation of axonal tracts in the embryonic central nervous system of Drosophila, Genetics, 162, 1703, 10.1093/genetics/162.4.1703

10.1007/BF00305372

10.1038/35019537

10.1038/ncb0102-e15

Villella A, 1997, Extended reproductive role of the fruitless gene in Drosophila melanogaster revealed by behavioral analysis of new fru mutants, Genetics, 147, 1107, 10.1093/genetics/147.3.1107

10.1002/cne.903610103

10.1002/cne.1287