Characterization of functional subgroups among genetically identified cholinergic neurons in the pedunculopontine nucleus

B. Baksa1, A. Kovács1, T. Bayasgalan1, P. Szentesi1, Á. Kőszeghy1,2, P. Szücs3, Balázs Pál1
1Department of Physiology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
2Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
3Department of Anatomy, Histology and Embriology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary

Tóm tắt

The pedunculopontine nucleus (PPN) is a part of the reticular activating system which is composed of cholinergic, glutamatergic and GABAergic neurons. Early electrophysiological studies characterized and grouped PPN neurons based on certain functional properties (i.e., the presence or absence of the A-current, spike latency, and low threshold spikes). Although other electrophysiological characteristics of these neurons were also described (as high threshold membrane potential oscillations, great differences in spontaneous firing rate and the presence or absence of the M-current), systematic assessment of these properties and correlation of them with morphological markers are still missing. In this work, we conducted electrophysiological experiments on brain slices of genetically identified cholinergic neurons in the PPN. Electrophysiological properties were compared with rostrocaudal location of the neuronal soma and selected morphometric features obtained with post hoc reconstruction. We found that functional subgroups had different proportions in the rostral and caudal subregions of the nucleus. Neurons with A-current can be divided to early-firing and late-firing neurons, where the latter type was found exclusively in the caudal subregion. Similar to this, different parameters of high threshold membrane potential oscillations also showed characteristic rostrocaudal distribution. Furthermore, based on our data, we propose that high threshold oscillations rather emerge from neuronal somata and not from the proximal dendrites. In summary, we demonstrated the existence and spatial distribution of functional subgroups of genetically identified PPN cholinergic neurons, which are in accordance with differences found in projection and in vivo functional findings of the subregions. Being aware of functional differences of PPN subregions will help the design and analysis of experiments using genetically encoded opto- and chemogenetic markers for in vivo experiments.

Từ khóa


Tài liệu tham khảo

Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10(4):1185–1201

Mena-Segovia J, Bolam JP (2017) Rethinking the pedunculopontine nucleus: from cellular organization to function. Neuron 94(1):7–18. https://doi.org/10.1016/j.neuron.2017.02.027

Steriade M, Datta S, Paré D, Oakson G, Dossi C (1990) Neuronal activities in brain- stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10(8):2541–2559. https://doi.org/10.1523/JNEUROSCI.10-08-02541.1990

Nowacki A, Galati S, Ai-Schlaeppi J, Bassetti C, Kaelin A, Pollo C (2018) Pedunculopontine nucleus: an integrative view with implications on deep brain stimulation. Neurobiol Dis 1:1. https://doi.org/10.1016/j.nbd.2018.08.015

Pienaar IS, Vernon A, Philip Winn P (2017) The cellular diversity of the pedunculopontine nucleus: relevance to behavior in health and aspects of Parkinson’s disease. Neuroscientist 23(4):415–431. https://doi.org/10.1177/1073858416682471

Gut NK, Winn P (2015) Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism. J Neurosci 35(12):4792–4803. https://doi.org/10.1523/JNEUROSCI.3646-14.2015

Pienaar IS, Elson JL, Racca C, Nelson G, Turnbull DM, Morris CM (2013) Mitochondrial abnormality associates with type-specific neuronal loss and cell morphology changes in the pedunculopontine nucleus in Parkinson disease. Am J Pathol 183(6):1826–1840. https://doi.org/10.1016/j.ajpath.2013.09.002

Tubert C, Galtieri D, Surmeier JD (2018) The pedunclopontine nucleus and Parkinson’s disease. Neurobiol Dis S0969–9961(18):30493–30495. https://doi.org/10.1016/j.nbd.2018.08.017

French IT, Muthusamy KA (2018) A review of the pedunculopontine nucleus in parkinson’s disease. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2018.00099

Garcia Rill E (1991) The peduncolopontine nucleus. Prog Neurobiol 36(5):363–389. https://doi.org/10.1016/0301-0082(91)90016-T

Li M, Zhang W (2015) Oscillatons in pedunculopontine nucleus in Parkinson’s disease and its relationship with deep brain stimulation. Front Neural Circuits 9:47. https://doi.org/10.3389/fncir.2015.00047

Mena-Segovia J, Micklem BR, Nair-Roberts RG, Ungless MA, Bolam JP (2009) GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories. J Comp Neurol 515(4):397–408. https://doi.org/10.1002/cne.22065

Martinez-Gonzalez C, Bolam JP, Mena-Segovia J (2011) Topographical organization of the pedunculopontine nucleus. Front Neuroanat 5:22. https://doi.org/10.3389/fnana.2011.00022

Luquin E, Huerta I, Aymerich MA, Mengual E (2018) Stereological estimates of glutamatergic, GABAergic, and cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei in the rat. Front Neuroanat 12:34. https://doi.org/10.3389/fnana.2018.00034

Wang HL, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29(2):340–358. https://doi.org/10.1111/j.1460-9568.2008.06576.x

Martinez-Gonzalez C, Wang HL, Micklem BR, Bolam JP, Mena-Segovia J (2012) Subpopulations of cholinergic, GABAergic and glutamatergic neurons in the pedunculopontine nucleus contain calcium-binding proteins and are heterogeneously distributed. Eur J Neurosci 35(5):723–734. https://doi.org/10.1111/j.1460-9568.2012.08002.x

Elson JL, Kochaj R, Reynolds R, Pienaar IS (2018) Temporal-spatial profiling of pedunculopontine galanin-cholinergic. Neurons in the lactacystin rat model of Parkinson’s disease. Neurotox Res 34:16–31. https://doi.org/10.1007/s12640-017-9846-2

Takakusaki K, Shiroyama T, Yamamoto T, Kitai ST (1996) Cholinergic and noncholinergic tegmental pedunculopontine projection neurons in rats revealed by intracellular labeling. J Comp Neurol 371(3):345–361. https://doi.org/10.1002/(SICI)1096-9861(19960729)371:3%3c345:AID-CNE1%3e3.0.CO;2-2

Kamondi A, Williams JA, Hutcheon B, Reiner PB (1992) Membrane properties of mesopontine cholinergic neurons studied with the whole-cell patch-clamp technique: implications for behavioral state control. J Neurophysiol 68(4):1359–1372. https://doi.org/10.1152/jn.1992.68.4.1359

Saitoh K, Hattori S, Song WJ, Isa T, Takakusaki K (2003) Nigral GABAergic inhibition upon cholinergic neurons in the rat pedunculopontine tegmental nucleus. Eur J Neurosci 18(4):879–886. https://doi.org/10.1046/j.1460-9568.2003.02825

Veleanu M, Axen TA, Kristensen MP, Kohlmeier KA (2016) Comparison of bNOS and chat immunohistochemistry in the laterodorsal tegmentum (LDT) and the pedunculopontine tegmentum (PPT) of the mouse from brain slices prepared for electrophysiology. J Neurosci Methods 263:23–35. https://doi.org/10.1016/j.jneumeth.2016.01.020

Kang Y, Kitai ST (1990) Electrophysiological properties of pedunculopontine neurons and their postsynaptic response following stimulation of substantia nigra reticulata. Brain Res 535(1):79–95. https://doi.org/10.1016/0006-8993(90)91826-3

Takakusaki K, Shiroyama T, Kitai ST (1997) Two types of cholinergic neurons in the rat tegmental pedunculopontine nucleus: electrophysiological and morphological characterization. Neuroscience 79(4):1089–1109

Kezunovic N, Urbano FJ, Simon C, Hyde J, Smith K, Garcia-Rill E (2011) Mechanism behind gamma band activity in the pedunculopontine nucleus. Eur J Neurosci 34(3):404–415. https://doi.org/10.1111/j.1460-9568.2011.07766.x

Bordas C, Kovacs A, Pal B (2015) The M-current contributes to high threshold membrane potential oscillations in a cell type-specific way in the pedunculopontine nucleus of mice. Front Cell Neurosci 9:121. https://doi.org/10.3389/fncel.2015.00121

Boucetta S, Cisse Y, Mainville L, Morales M, Jones EB (2014) Discharge profiles across the sleep–waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 34(13):4708–4727. https://doi.org/10.1523/JNEUROSCI.2617-13.2014

Mena-Segovia J, Winn P, Bolam JP (2008) Cholinergic modulation of midbrain dopaminergic systems. Brain Res Rev 58(2):265–271. https://doi.org/10.1016/j.brainresrev.2008.02.003

Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34(13):4509–4518. https://doi.org/10.1523/JNEUROSCI.5071-13.2014

Dautan D, Souza AS, Huerta-Ocampo I, Valencia M, Assous M, Witten Ilana B, Deisseroth K, Tepper JM, Bolam JP, Gerdjikov TV, Mena-Segovia J (2016) Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nat Neurosci 19(8):1025–1033. https://doi.org/10.1038/nn.4335

Baghdoyan HA, Rodrigo- Angulo ML, McCarley RW, Hobson A (1987) A neuroanatomical gradient in pontine tegmentum for the cholinoceptive induction of desynchronized sleep signs. Brain Res 414(2):245–261. https://doi.org/10.1016/0006-8993(87)90005-9

Karachi C, André A, Bertasi E, Bardinet E, Lehéricy S, Bernard FA (2012) Functional parcellation of the lateral mesencephalus. J Neurosci 32(27):9396–9401. https://doi.org/10.1523/JNEUROSCI.0509-12.2012

Nigro MJ, Mateos-Aparicio P, Storm JF (2014) Expression and functional roles of Kv7/KCNQ/M-channels in rat medial entorhinal cortex layer II stellate cells. J Neurosci 34(20):6807–6812. https://doi.org/10.1523/JNEUROSCI.4153-13.2014

Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, Vega-Saenz de Miera E, Rudy B (1999) Molecular diversity of K + channels. Ann N Y Acad Sci 868:233–285. https://doi.org/10.1111/j.1749-6632.1999.tb11293.x

Kanold PO, Manis PB (1999) Transient potassium currents regulate the discharge patterns of dorsal cochlear nucleus pyramidal cells. J Neurosci 19(6):2195–2208. https://doi.org/10.1523/JNEUROSCI.19-06-02195.1999

Simon C, Kezunovic N, Ye M, Hyde J, Hayar A, Williams DK, Garcia-Rill E (2010) Gamma band unit activity and population responses in the pedunculopontine nucleus. J Neurophysiol 104(1):463–474. https://doi.org/10.1152/jn.00242.2010

Paxinos G, franklin KB (2013) The mouse brain in stereotaxic coordinates, 4th edn. Elsevier, San Diego

Leonard CS, Llinás R (1994) Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling rem sleep: an in vitro electrophysiological study. Neuroscience 59(2):309–330. https://doi.org/10.1016/0306-4522(94)90599-1

Leonard CS, Llinas R (1988) Electrophysiology of thalamic-projecting cholinergic brainstem neurons and their inhibiton by Ach. Neurosci Abstr 14:297

Ye M, Hayar A, Strotman B, Garcia-Rill E (2010) Cholinergic modulation of fast inhibitory and excitatory transmission to pedunculopontine thalamic projecting neurons. J Neurophysiol 103(5):2417–2432. https://doi.org/10.1152/jn.01143.2009

Unal CT, Golowasch JP, Zaborszky L (2012) Adult mouse basal forebrain harbors two distinct cholinergic populations defined by their electrophysiology. Front Behav Neurosci 6:21. https://doi.org/10.3389/fnbeh.2012.00021

Datta S, Siwek DF (1997) Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM Sleep. J Neurophysiol 77(6):2975–2988. https://doi.org/10.1152/jn.1997.77.6.2975

Sugaya K, McKinney M (1994) Nitric oxide synthase gene expression in cholinergic neurons in the rat brain examined by combined immunocytochemistry and in situ hybridization histochemistry. Brain Res Mol Brain Res 23(1–2):111–125. https://doi.org/10.1016/0169-328X(94)90217-8

Torterolo P, Yamuy J, Sampogna S, Morales FR, Chase MH (2001) GABAergic neurons of the laterodorsal and pedunculopontine tegmental nuclei of the cat express c-fos during carbachol-induced active sleep. Brain Res 892(2):309–319. https://doi.org/10.1016/S0006-8993(00)03264-9

Shiromani PJ, Winston S, McCarley RW (1996) Pontine cholinergic neurons show Fos-like immunoreactivity associated with cholinergically induced REM sleep. Brain Res Mol Brain Res 38(1):77–84. https://doi.org/10.1016/0169-328X(95)00325-M

Furman M, Zhan Q, McCafferty C, Lerner BA, Motelow JE, Meng J, Ma C, Buchanan GF, Witten IB, Deisseroth K, Cardin JA, Blumenfeld H (2015) Optogenetic stimulation of cholinergic brainstem neurons. Epilepsia 56(12):e198–e202. https://doi.org/10.1111/epi.13220

Van Dort CJ, Zachs DP, Kenny JD, Zheng S, Goldblum RR, Gelwan NA, Ramos DM, Nolan MA, Wang K, Weng FJ, Lin Y, Wilson MA, Brown EN (2015) Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. PNAS 112(2):584–589. https://doi.org/10.1073/pnas.1423136112

Kroeger D, Ferrari LL, Petit G, Mahoney CE, Fuller PM, Arrigoni E, Scammell TE (2017) Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice. J Neurosci 37(5):1352–1366. https://doi.org/10.1523/JNEUROSCI.1405-16.2016

Petzold A, Valencia M, Pál B, Mena-Segovia J (2015) Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms. Front Neural Circuits 9:68. https://doi.org/10.3389/fncir.2015.00068

Kőszeghy Á, Kovács A, Bíró T, Szücs P, Vincze J, Hegyi Z, Antal M, Pál B (2015) Endocannabinoid signaling modulates neurons of the pedunculopontine nucleus (PPN) via astrocytes. Brain Struct Funct 220(5):3023–3041. https://doi.org/10.1007/s00429-014-0842-5

Ishibashi M, Gumenchuk I, Kang B, Steger C, Lynn E, Molina NE, Eisenberg LM, Leonard CS (2015) Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca(2 +)-dependent resonance in LDT and PPT cholinergic neurons. Front Neurol 6:120. https://doi.org/10.3389/fneur.2015.00120

Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA (2004) Structure and function of Kv4-family transient potassium channels. Physiol Rev 84(3):803–833. https://doi.org/10.1152/physrev.00039.2003

Miller MN, Okaty BW, Nelson SB (2008) Region-specific spike-frequency acceleration in layer 5 pyramidal neurons mediated by Kv1 subunits. J Neurosci 28(51):13716–13726. https://doi.org/10.1523/JNEUROSCI.2940-08.2008

Bardóczi Z, Pál B, Kőszeghy Á, Wilheim T, Watanabe M, Záborszky L, Liposits Z, Kalló I (2017) Glycinergic input to the mouse basal forebrain cholinergic neurons. J Neurosci 37(39):9534–9549. https://doi.org/10.1523/JNEUROSCI.3348-16.2017

Monnerat-Cahli G, Alonso H, Gallego M, Alarcón ML, Bassani RA, Casis O, Medei E (2014) Toll-like receptor 4 activation promotes cardiac arrhythmias by decreasing the transient outward potassium current (Ito) through an IRF3-dependent and MyD88-independent pathway. J Mol Cell Cardiol 76:116–125. https://doi.org/10.1016/j.yjmcc.2014.08.012

Llinás RR, Grace AA, Yarom Y (1991) In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. Proc Natl Acad Sci USA 88(3):897–901

Alonso A, Llinás RR (1989) Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342(6246):175–177. https://doi.org/10.1038/342175a0

Pape HC, Driesang RB (1998) Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex. J Neurophysiol 79(1):217–226. https://doi.org/10.1152/jn.1998.79.1.217

Garcia-Rill E, Kezunovic N, Hyde J, Simon C, Beck P, Urbano FJ (2013) Coherence and frequency in the reticular activating system (RAS). Sleep Med Rev 17(3):227–238. https://doi.org/10.1016/j.smrv.2012.06.002

Leonard CS, Llinas RR (1990) Serotonin inhibits mesopontine cholinergic neurons in vitro. Neurosci Abstr 16:1233

Luster B, D’Onofrio S, Urbano F, Garcia-Rill E (2015) High-threshold Ca2 + channels behind gamma band activity in the pedunculopontine nucleus (PPN). Physiol Rep 3(6):e12431. https://doi.org/10.14814/phy2.12431

Kezunovic N, Hyde J, Goitia B, Bisagno V, Urbano FJ, Garcia-Rill E (2013) Muscarinic modulation of high frequency oscillations in pedunculopontine neurons. Front Neurol 4:176. https://doi.org/10.3389/fneur.2013.00176

Hyde J, Kezunovic N, Urbano FJ, Garcia-Rill E (2013) Visualization of fast calcium oscillations in the parafascicular nucleus. Pflugers Arch 465(9):1327–1340. https://doi.org/10.1007/s00424-013-1264-6

Moca VV, Nikolic D, Singer W, Mureşan RC (2014) Membrane resonance enables stable and robust gamma oscillations. Cereb Cortex 24(1):119–142. https://doi.org/10.1093/cercor/bhs293

Fraix V, Bastin J, David O, Goetz L, Ferraye M, Benabid AL, Chabardes S, Pollak P, Debû, B (2013) Pedunculopontine nucleus area oscillations during stance, stepping and freezing in Parkinson’s disease. PLoS One 8(12):e83919. https://doi.org/10.1371/journal.pone.0083919

Androulidakis AG, Khan S, Litvak V, Pleydell-Pearce CW, Brown P, Gill SS (2008) Local field potential recordings from the pedunculopontine nucleus in a Parkinsonian patient. Neuroreport 19(1):59–62. https://doi.org/10.1097/wnr.0b013e3282f2e2d1

Tsang EW, Hamani C, Moro E, Mazzella F, Poon YY, Lozano AM, Chen R (2010) Involvement of the human pedunculopontine nucleus region in voluntary movements. Neurology 75(11):950–959. https://doi.org/10.1212/WNL.0b013e3181f25b35

Lau B, Welter ML, Belaid H, Fernandez Vidal S, Bardinet E, Grabli D, Karachi C (2015) The integrative role of the pedunculopontine nucleus in human gait. Brain 138(Pt 5):1284–1296. https://doi.org/10.1093/brain/awv047

Weinberger M, Mahant N, Hutchison WD, Lozano AM, Moro E, Hodaie M, Lang AE (2006) Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol 96(6):3248–3256. https://doi.org/10.1152/jn.00697.2006

Thevathasan W, Pogosyan A, Hyam JA, Jenkinson N, Foltynie T, Limousin P, Bogdanovic M, Zrinzo L, Green AL, Aziz TZ, Brown P (2012) Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain 135(Pt 1):148–160. https://doi.org/10.1093/brain/awr315

Tattersall TL, Stratton PG, Coyne TJ, Cook R, Silberstein P, Silburn PA, Windels F, Sah P (2014) Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus. Nat Neurosci 17(3):449–454. https://doi.org/10.1038/nn.3642