Characterization of fluorescent pseudomonads isolates and their efficiency on the growth promotion of tomato plant

Annals of Agricultural Sciences - Tập 60 - Trang 131-140 - 2015
Fekria M.A. Saber1, Ahmed A. Abdelhafez2, Enas A. Hassan2, Elshahat M. Ramadan2
1Heliopolis University, Biotechnology Dept., Egypt
2Dept. of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Egypt

Tài liệu tham khảo

Abd-Elmotelep, S.B., 1996. Biological control of soil borne diseases of some legumes in relation to symbiotic nitrogen fixation. M.Sc. Thesis, Fac. Agric., Kafr El-Sheikh Univ., Egypt, p. 21. Ahmed, Iman A., 2014. Biological activity of microbial rhizosphere of some medical plants. M.Sc. Dept of Microbiol., Fac. Agric., Ain Shams Univ., Egypt. Alexander, 1991, Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria, Biol. Fertil. Soils, 12, 39, 10.1007/BF00369386 Al-Juboory, 2013, Efficiency of some inoculation methods of Fusarium proliferatum and F. verticilloides on the systemic infection and seed transmission on maize under field conditions. agric. biol, J. North America, 4, 583 Berg, 2002, Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants, Appl. Environ. Microbiol., 68, 3328, 10.1128/AEM.68.7.3328-3338.2002 Beyenal, 2003, The double substrate growth kinetics of Pesudomonas aerugenosa, Enzyme Microbial Technol., 32, 92, 10.1016/S0141-0229(02)00246-6 Bhattacharyya, 2012, Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture, World J. Microbiol. Biotechnol., 28, 1327, 10.1007/s11274-011-0979-9 Bultreys, 2003, High-performance liquid chromatography analyses of pyoverdin siderophores, differentiate among phytopathogenic fluorescent Pseudomonas species, Appl. Environ. Microbiol., 69, 1143, 10.1128/AEM.69.2.1143-1153.2003 Castro, 2009, The role of microbial signals in plant growth and development, Plant Signal Behav., 4, 701, 10.4161/psb.4.8.9047 Chapman, H.D., Pratt, P.F., 1961. Methods of analysis for soils, plants, and waters. Univ. of Calif., Div. Agr. Sci. Berkeley, Calif., p. 309. D’aes, 2011, Biological control of rhizoctonia root rot on bean by phenazine and cyclic lipopeptide-producing pseudomonas CMR12a, Phytopathology, 101, 996, 10.1094/PHYTO-11-10-0315 Damayanti, 2007, Utilization of root colonizing bacteria to protect hot-pepper against Tobacco Mosaic Tobamovirus, Hayati J. Biosci., 14, 105, 10.4308/hjb.14.3.105 Defago, 1990, Pseudomonads as antagonists of soil-borne plant pathogens: mode of action and genetic analysis, Soil Biochem., 6, 249 Edi-Premono, 1996, Effect of phosphate solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere, Indonesian J. Crop Sci., 11, 13 Fallahzadeh, 2010, Growth and pyoverdine production kinetics of Pesudomonas aerugenosa 7NSK2 in an experimental fermenter, J. Agric. Technol., 6, 107 Fuchs, 2001, Siderotyping-a powerful tool for the characterization of pyoverdines, Curr. Top Med. Chem., 1, 31, 10.2174/1568026013395542 Glick, 1995, The enhancement of plant growth promotion by free living bacterial, Can. J. Microbiol., 41, 109, 10.1139/m95-015 Jackson, 1958 Jackson, 1973 Karlidag, 2007, Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of apple, Sci. Horticult., 114, 16, 10.1016/j.scienta.2007.04.013 Kazempour, 2004, Biological control of Rhizoctonia solani, the causal agent of rice sheath blight by antagonistic bacteria in greenhouse and field conditions, Plant Pathol. J., 3, 88, 10.3923/ppj.2004.88.96 Keel, 1992, Suppression of root diseases by Pseudomonas fluorescens CHAO: importance of bacterial secondary metabolites, 2,4diacetylphoroglucinol, Mol. Plant-Microbe Interact., 5, 4, 10.1094/MPMI-5-004 King, 1954, To simple media for the demonstration of pyocyamin and fluorescin, J. Lab. Clin. Med., 414, 301 Lane, 1991, 16S/23S rRNA sequencing, 115 Loper, 1986, Influence of bacterial sources on indole-3 acetic acid on root elongation of sugarbeet, Phytopathology, 76, 386, 10.1094/Phyto-76-386 Lorck, 1948, Production of hydrocyanic acid by bacteria, Physiol. Plant., 1, 142, 10.1111/j.1399-3054.1948.tb07118.x Lugtenberg, 2001, Molecular determinants of rhizosphere colonization by Pseudomonas, Annu. Rev. Phytopathol., 39, 461, 10.1146/annurev.phyto.39.1.461 Meyer, 2000, Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species, Arch. Microbiol., 174, 135, 10.1007/s002030000188 Mezaache-Aichour, 2012, Isolation, identification and antimicrobial activity of pseudomonads isolated from the rhizosphere of potatoes growing in Algeria, J. Plant Pathol., 94, 89 Moeinzadeh, 2010, Biopriming of sunflower (Helianthus annuus L.) seed with Pseudomonas fluorescens for improvement of seed invigoration and seedling growth, Aust. J. Crop Sci., 4, 564 Neiland, 1995, Siderophore: structure and function of microbial iron transport compounds, J. Biol. Chem., 270, 26723, 10.1074/jbc.270.45.26723 Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. 939, Washington, D.C. 19p. Painter, 1963, Mathematics of microbial populations, Ann. Rev. Microbiol., 22, 219 Parmer, 2013, Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions, J. Microbiol. Res., 3, 25 Patten, 2002, Role of Pseudomonas putida indole acetic acid in development of the host plant root system, Appl. Environ. Microbiol., 68, 3795, 10.1128/AEM.68.8.3795-3801.2002 Scarpellini, 2004, Development of PCR assay to identify Pseudomonas fluorescens and its biotype, FEMS Microbiol. Lett., 236, 257, 10.1111/j.1574-6968.2004.tb09655.x Schippers, 1987, Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices, Ann. Rev. Phytopathol., 25, 339, 10.1146/annurev.py.25.090187.002011 Sharma, 2003, Growth promoting influence of siderophore producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions, Microbiol. Res., 158, 243, 10.1078/0944-5013-00197 Sindhu, 1999, Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of plant growth in green gram (Vigna radiate), Biol. Fertil. Soils, 29, 62, 10.1007/s003740050525 Skidmore, 1976, Colony interactions and hyphae interferences between Septoria nodorum and phylloplane fungi, Trans. Br. Mycol. Soc., 66, 57, 10.1016/S0007-1536(76)80092-7 Snedecor, 1980 Stanier, 1970 SubbaRao, 1982 Sunish Kumar, 2005, Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad spectrum antifungal activity and biofertilizing traits, J. Appl. Microbiol., 98, 145, 10.1111/j.1365-2672.2004.02435.x Tien, 1979, Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.), Appl. Microbiol., 37, 1016, 10.1128/AEM.37.5.1016-1024.1979 Verma, 2001, Evaluation of plant growth promoting and colonization from deep water rice, J. Biotechnol., 91, 127, 10.1016/S0168-1656(01)00333-9 Vincent, 1927, Distortion of fungal hyphae in the presence of certain inhibitors, Nature, 159, 850, 10.1038/159850b0 Weller, 2007, Pseudomonas biocontrol agents of soil-borne pathogens: looking back over 30years, Phytopathology, 97, 250, 10.1094/PHYTO-97-2-0250 Woomer, 1990, Overcoming the inflexibility of most-probable number procedures, Agron. J., 82, 349, 10.2134/agronj1990.00021962008200020035x