Characterization of exopolysaccharide produced from marine-derived Aspergillus terreus SEI with prominent biological activities
Tài liệu tham khảo
Amer, 2019, Characterization of some fungal strains isolated from the Eastern coast of Alexandria, Egypt, and some applications of Penicillium crustosum, Egyptian Journal of Aquatic Research, 45, 211, 10.1016/j.ejar.2019.06.006
Artmann, 2019, Critical evaluation of a putative glucosamine excretion by Aspergillus niger CBS120.49 and Penicillium ochrochloron CBS123.824 under citric acid producing conditions, Scientific Reports, 9, 7496, 10.1038/s41598-019-43976-z
Banik, 2000, Exopolysaccharide of the gellan family: Prospects and potential, World Journal of Microbiology and Biotechnology, 16, 407, 10.1023/A:1008951706621
Barnett, 1986
Botelho, 2014, Characterisation of a new exopolysaccharide obtained from of fermented kefir grains in soymilk, Carbohydrate Polymers, 107, 1, 10.1016/j.carbpol.2014.02.036
Bramhachari, 2007, Isolation and characterization of mucous exopolysaccharide (EPS) produced by Vibrio furnissii strain VB0S3, Journal of Microbiology and Biotechnology, 17, 44
Cao, 2020, Chemical diversity and biological function of indolediketopiperazines from marine-derived fungi, Marine Life Science & Technology, 2, 31, 10.1007/s42995-019-00023-0
Clementi, 1997, Alginate production by Azotobacter vinelandii, Critical Reviews in Biotechnology, 17, 327, 10.3109/07388559709146618
Costa, C., Menolli, R. A., Osaku, E. F., Tramontina, R., de Melo, R. H., do Amaral, A. E., Duarte, P. A. D., de Carvalho, M. M., Smiderle, F. R., Silva, J., and Mello, R. G. (2019). Exopolysaccharides from Aspergillus terreus: Production, chemical elucidation and immunoactivity. International Journal of Biology Macromolecules, 139, 654–664.
Demain, 2017, History of industrial biotechnology, 1
Dubois, 1956, Colorimetric Method for Determination of Sugars and Related Substances, Analytical Chemistry, 28, 350, 10.1021/ac60111a017
Katia, 2012, Analytical techniques for discovery of bioactive compounds from marine fungi, Trends in Analytical Chemistry, 34, 97, 10.1016/j.trac.2011.10.014
Kogan, 2008, Yeast cell wall polysaccharides as antioxidants and antimutagens: Can they fight cancer?, Neoplasma, 55, 387
Lai, 2007, Effects of lactose and glucose on production of itaconic acid and lovastatin by Aspergillus terreus ATCC 20542, Journal of Bioscience and Bioengineering, 104, 9, 10.1263/jbb.104.9
Li, 2016, Structure and antitumor activity of the extracellular polysaccharides from Aspergillus aculeatus via apoptosis and cell cycle arrest, Glycoconjugate Journal, 33, 975, 10.1007/s10719-016-9717-8
Mahapatra, 2012, Structural elucidation and bioactivity of a novel exopolysaccharide from endophytic Fusarium solani SD5, Carbohydrate Polymers, 90, 683, 10.1016/j.carbpol.2012.05.097
Mahapatra, 2013, Fungal Exopolysaccharide: Production, Composition and Applications, Microbiology Insights, 6, 1, 10.4137/MBI.S10957
Martinichen-Herrero, 2005, Anticoagulant and antithrombotic activity of a sulfate obtained from a glucan component of the lichen Parmotrema mantiqueirense Hale, Carbohydrate Polymers, 60, 7, 10.1016/j.carbpol.2004.11.014
Meng, 2017, Isolation, purification, structural analysis and immunostimulatory activity of water-soluble polysaccharides from Grifola Frondosa fruiting body, Carbohydrate Polymers, 157, 1134, 10.1016/j.carbpol.2016.10.082
Mo, 2017, Anti-tumor effects of (1–>3)-beta-d-glucan from Saccharomyces cerevisiae in S180 tumor-bearing mice, International Journal of Biological Macromolecules, 95, 385, 10.1016/j.ijbiomac.2016.10.106
Nehal, 2019, Characterization, high production and antimicrobial activity of exopolysaccharides from Lactococcus lactis F-mou, Microbial Pathogenesis, 132, 10, 10.1016/j.micpath.2019.04.018
Pang, K.-L., Overy, D. P., Jones, E. B. G., Calado, M. d. L., Burgaud, G., Walker, A. K., Johnson, J. A., Kerr, R. G., Cha, H.-J., and Bills, G. F. (2016). ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: Toward a new consensual definition. Fungal Biology Reviews, 30(4), 163–175.
Park, 2019, A review of the microbial production of bioactive natural products and biologics, Frontiers in microbiology, 10, 1404, 10.3389/fmicb.2019.01404
Prathyusha, 2018, Chemical characterization and antioxidant properties of exopolysaccharides from mangrove filamentous fungi Fusarium equiseti ANP2, Biotechnology Reports, 19, 10.1016/j.btre.2018.e00277
Pushpamali, 2008, Isolation and purification of an anticoagulant from fermented red seaweed Lomentaria catenata, Carbohydrate Polymers, 73, 274, 10.1016/j.carbpol.2007.11.029
Rédou, 2015, Species Richness and Adaptation of Marine Fungi from Deep-Subseafloor Sediments, Applied and Environment Microbiology, 81, 3571, 10.1128/AEM.04064-14
Riddell, 1950, Permanent Stained Mycological Preparations Obtained by Slide Culture, Mycologia, 42, 265, 10.1080/00275514.1950.12017830
Roeder, 2004, Toll-like receptors as key mediators in innate antifungal immunity, Medical Mycology, 42, 485, 10.1080/13693780400011112
Saboural, 2014, Purification of a low molecular weight fucoidan for SPECT molecular imaging of myocardial infarction, Marine drugs, 12, 4851, 10.3390/md12094851
Samson, 2014, Phylogeny, identification and nomenclature of the genus Aspergillus, Studies in mycology, 78, 141, 10.1016/j.simyco.2014.07.004
Shi, 2016, Characterization of a novel purified polysaccharide from the flesh of Cipangopaludina chinensis, Carbohydrate polymers, 136, 875, 10.1016/j.carbpol.2015.09.062
Sivasankar, 2018, Characterization, antimicrobial and antioxidant property of exopolysaccharide mediated silver nanoparticles synthesized by Streptomyces violaceus MM72, Carbohydrate polymers, 181, 752, 10.1016/j.carbpol.2017.11.082
Vasconcelosa, A. F. D., Dekkerb, R. F. H., Barbosab, A. M., Carboneroc, E. R., Silveira, J. L. M., Glauserd, B., Pereirad, M., and Silva, M. d. L. C. d. (2013). Sulfonation and anticoagulant activity of fungal exocellular β-(1→6)-d-glucan(lasiodiplodan). Carbohydrate Polymers 92, 1908–1914.
Vinothini, 2019, Statistical optimization, physio-chemical and bio-functional attributes of a novel exopolysaccharide from probiotic Streptomyces griseorubens GD5, International Journal of Biological Macromolecules, 134, 575, 10.1016/j.ijbiomac.2019.05.011
Wang, 2011, Three new compounds from Aspergillus terreus PT06-2 grown in a high salt medium, Marine Drugs, 9, 1368, 10.3390/md9081368
White, T. J., Bruns, T., Lee, S., and aylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A guide to Methods and Applications, (ed. M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White). Academic Press: San Diego, U.S.A., 315–322.
Xu-Hua, 2014, Fungal Exopolysaccharide: Production, Composition and Applications, Marine Drugs, 12, 6113
Xu, 2019, Purification, characterization and bioactivity of exopolysaccharides produced by Lactobacillus plantarum KX041, International journal of biological macromolecules, 128, 480, 10.1016/j.ijbiomac.2019.01.117
Zaghloul, 2019, Comparative study on antimicrobial activity of commercial and extracted chitin and chitosan from Marsupenaeus japonicus shells, Egyptian Journal of Aquatic Biology and Fisheries, 23, 291, 10.21608/ejabf.2019.31536
Zhou, 2016, Production, purification and structural study of an exopolysaccharide from Lactobacillus plantarum BC-25, Carbohydrate polymers, 144, 205, 10.1016/j.carbpol.2016.02.067
Zong, 2012, Anticancer polysaccharides from natural resources: A review of recent research, Carbohydrate Polymers, 90, 1395, 10.1016/j.carbpol.2012.07.026