Characterization of dose dependent mechanical properties in helium implanted tungsten

Journal of Nuclear Materials - Tập 509 - Trang 260-266 - 2018
W.Q. Chen1, X.Y. Wang1, X.Z. Xiao2, S.L. Qu1, Y.Z. Jia3, W. Cui1, X.Z. Cao4, B. Xu1, W. Liu1
1School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
2Department of Mechanics, School of Civil Engineering, Central South University, Changsha, 410075, PR China
3Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu, Sichuan, 610213, PR China
4Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China

Tài liệu tham khảo

Hirai, 2014, ITER full tungsten divertor qualification program and progress, Phys. Scr. T, 159, 014006, 10.1088/0031-8949/2014/T159/014006 Gilbert, 2012, An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation, Nucl. Fusion, 52, 083019, 10.1088/0029-5515/52/8/083019 Hofmann, 2015, Non-contact measurement of thermal diffusivity in ion-implanted nuclear materials, Sci. Rep., 5, 16042, 10.1038/srep16042 Gong, 2016, Effect of dislocations on helium retention in deformed pure iron, J. Nucl. Mater., 482, 93, 10.1016/j.jnucmat.2016.10.014 Ou, 2014, The role of helium implantation induced vacancy defect on hardening of tungsten, J. Appl. Phys., 115, 123521, 10.1063/1.4870234 Debelle, 2008, First temperature stage evolution of irradiation-induced defects in tungsten studied by positron annihilation spectroscopy, J. Nucl. Mater., 376, 216, 10.1016/j.jnucmat.2008.03.002 Debelle, 2007, Helium behaviour and vacancy defect distribution in helium implanted tungsten, J. Nucl. Mater., 362, 181, 10.1016/j.jnucmat.2007.01.021 Roedig, 2004, Post irradiation testing of samples from the irradiation experiments PARIDE 3 and PARIDE 4, J. Nucl. Mater., 329–333, 766, 10.1016/j.jnucmat.2004.04.176 Pintsuk, 2012 Oliver, 2004, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res., 19, 3, 10.1557/jmr.2004.19.1.3 Hosemann, 2009, Nanoindentation on ion irradiated steels, J. Nucl. Mater., 389, 239, 10.1016/j.jnucmat.2009.02.026 Hosemann, 2018, Small-scale mechanical testing on nuclear materials: bridging the experimental length-scale gap, Scripta Mater., 143, 161, 10.1016/j.scriptamat.2017.04.026 Nix, 1998, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solid., 46, 411, 10.1016/S0022-5096(97)00086-0 Bushby, 2011, Nanoindentation investigation of ion-irradiated Fe–Cr alloys using spherical indenters, J. Mater. Res., 27, 85, 10.1557/jmr.2011.304 Weaver, 2017, Spherical nanoindentation of proton irradiated 304 stainless steel: a comparison of small scale mechanical test techniques for measuring irradiation hardening, J. Nucl. Mater., 493, 368, 10.1016/j.jnucmat.2017.06.031 Pathak, 2017, Probing nanoscale damage gradients in ion-irradiated metals using spherical nanoindentation, Sci. Rep., 7, 11918, 10.1038/s41598-017-12071-6 Iwakiri, 1998, Hardening behavior of molybdenum by low energy He and D ion irradiation, J. Nucl. Mater., 258–263, 873, 10.1016/S0022-3115(98)00260-8 Armstrong, 2013, Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten, Appl. Phys. Lett., 102, 251901, 10.1063/1.4811825 Gao, 2017, Microstructure, hardness and defect structure of the He irradiated ODS ferritic steel, J. Alloy. Comp., 691, 653, 10.1016/j.jallcom.2016.08.312 Hunn, 2000, Helium and hydrogen induced hardening in 316LN stainless steel, J. Nucl. Mater., 282, 131, 10.1016/S0022-3115(00)00424-4 Li, 2014, Helium defects interactions and mechanism of helium bubble growth in tungsten: a molecular dynamics simulation, J. Nucl. Mater., 451, 356, 10.1016/j.jnucmat.2014.04.022 Li, 2014, Molecular dynamics simulation of helium cluster diffusion and bubble formation in bulk tungsten, J. Nucl. Mater., 455, 544, 10.1016/j.jnucmat.2014.08.028 Sandoval, 2015, Competing kinetics and He bubble morphology in W, Phys. Rev. Lett., 114, 105502, 10.1103/PhysRevLett.114.105502 Kobayashi, 2015, A molecular dynamics study on bubble growth in tungsten under helium irradiation, J. Nucl. Mater., 463, 1071, 10.1016/j.jnucmat.2014.12.049 Tian, 2004, The movement of screw dislocations in tungsten, Mater. Sci. Eng. A-Struct, 369, 210, 10.1016/j.msea.2003.11.028 Fikar, 2009, Atomistic simulation of 1/2 < 111 > screw dislocations in BCC tungsten, vol 59, 247 Xu, 2017, Atomistic simulations of screw dislocations in bcc tungsten: from core structures and static properties to interaction with vacancies, Nucl. Instrum. Meth. B, 393, 174, 10.1016/j.nimb.2016.10.025 Xie, 2017, Trapping of hydrogen and helium at an {110}< 111 > edge dislocation in tungsten, J. Nucl. Mater., 484, 270, 10.1016/j.jnucmat.2016.12.014 Bakaev, 2017, Ab initio study of interaction of helium with edge and screw dislocations in tungsten, Nucl. Instrum. Meth. B, 393, 150, 10.1016/j.nimb.2016.11.036 Ziegler, 2010, SRIM - the stopping and range of ions in matter (2010), Nucl. Instrum. Meth. B, 268, 1818, 10.1016/j.nimb.2010.02.091 Qu, 2017, Thermal conductivity measurement of the He-ion implanted layer of W using transient thermoreflectance technique, J. Nucl. Mater., 484, 382, 10.1016/j.jnucmat.2016.11.029 Harrison, 2017, A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten, J. Nucl. Mater., 495, 492, 10.1016/j.jnucmat.2017.08.033 Lu, 2015, Investigation of vacancy-type defects in helium irradiated FeCrNi alloy by slow positron beam, J. Nucl. Mater., 458, 240, 10.1016/j.jnucmat.2014.12.070 Hertz, 1896 Field, 1993, A simple predictive model for spherical indentation, J. Mater. Res., 8, 297, 10.1557/JMR.1993.0297 Basu, 2006, On the determination of spherical nanoindentation stress–strain curves, J. Mater. Res., 21, 2628, 10.1557/jmr.2006.0324 Herbert, 2001, On the measurement of stress–strain curves by spherical indentation, Thin Solid Films, 398–399, 331, 10.1016/S0040-6090(01)01439-0 Bonny, 2014, On the binding of nanometric hydrogen-helium clusters in tungsten, J. Phys. Condens. Matter, 26, 485001, 10.1088/0953-8984/26/48/485001 Terentyev, 2011, Interaction of an edge dislocation with Cu-Ni-vacancy clusters in bcc iron, J. Nucl. Mater., 419, 134, 10.1016/j.jnucmat.2011.08.021 Terentyev, 2012, Interaction of a screw dislocation with Cu-precipitates, nanovoids and Cu-vacancy clusters in BCC iron, J. Nucl. Mater., 421, 32, 10.1016/j.jnucmat.2011.11.037 Terentyev, 2010, Reactions between a 1/2 < 111 > screw dislocation and < 100 > interstitial dislocation loops in alpha-iron modelled at atomic scale, Philos. Mag, 90, 1019, 10.1080/14786430903019073 Pathak, 2014, Understanding pop-ins in spherical nanoindentation, Appl. Phys. Lett., 105, 161913, 10.1063/1.4898698 Zhu, 2016, Deuterium occupation of vacancy-type defects in argon-damaged tungsten exposed to high flux and low energy deuterium plasma, Nucl. Fusion, 56, 036010, 10.1088/0029-5515/56/3/036010 Uytdenhouwen, 2016, Mechanical and microstructural changes in tungsten due to irradiation damage, Phys. Scr., T, 167, 014007, 10.1088/0031-8949/T167/1/014007 Miyamoto, 2014, In situ transmission electron microscope observation of the formation of fuzzy structures on tungsten, Phys. Scr., T, 159, 014028, 10.1088/0031-8949/2014/T159/014028 Iwakiri, 2000, Microstructure evolution in tungsten during low-energy helium ion irradiation, J. Nucl. Mater., 283–287, 1134, 10.1016/S0022-3115(00)00289-0 Love, 1964, Dislocation pipe diffusion, Acta Metall. Mater., 12, 731, 10.1016/0001-6160(64)90220-2 Turunen, 1974, Model for dislocation climb by a pipe diffusion mechanism, Philos. Mag, 29, 701, 10.1080/14786437408222064 Cereceda, 2013, Assessment of interatomic potentials for atomistic analysis of static and dynamic properties of screw dislocations in W, J. Phys. Condens. Matter, 25, 085702, 10.1088/0953-8984/25/8/085702 Srivastava, 2013, Dislocation motion in tungsten: atomistic input to discrete dislocation simulations, Int. J. Plast., 47, 126, 10.1016/j.ijplas.2013.01.014 Groger, 2008, Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2 < 111 > screw dislocations at 0 K, Acta Mater., 56, 5401, 10.1016/j.actamat.2008.07.018 Johnson, 1985 Gao, 2015, Comparative simulation study of the structure of the plastic zone produced by nanoindentation, J. Mech. Phys. Solid., 75, 58, 10.1016/j.jmps.2014.11.005 Durst, 2005, Indentation size effect in metallic materials: correcting for the size of the plastic zone, Scripta Mater., 52, 1093, 10.1016/j.scriptamat.2005.02.009 Qiao, 2010, The influence of indenter tip rounding on the indentation size effect, Acta Mater., 58, 3690, 10.1016/j.actamat.2010.03.004 Yang, 2007, Dependence of nanohardness upon indentation size and grain size - a local examination of the interaction between dislocations and grain boundaries, Acta Mater., 55, 849, 10.1016/j.actamat.2006.09.004 Cao, 2008, Correlation between the flow stress and the nominal indentation hardness of soft metals, Scripta Mater., 59, 518, 10.1016/j.scriptamat.2008.04.039 Chicot, 2009, Hardness length-scale factor to model nano- and micro-indentation size effects, Mater. Sci. Eng. A-Struct, 499, 454, 10.1016/j.msea.2008.09.040 Gerberich, 2002, Interpretations of indentation size effects, J. Appl. Mech.-T. Asme, 69, 433, 10.1115/1.1469004