Characterization of dose dependent mechanical properties in helium implanted tungsten
Tài liệu tham khảo
Hirai, 2014, ITER full tungsten divertor qualification program and progress, Phys. Scr. T, 159, 014006, 10.1088/0031-8949/2014/T159/014006
Gilbert, 2012, An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation, Nucl. Fusion, 52, 083019, 10.1088/0029-5515/52/8/083019
Hofmann, 2015, Non-contact measurement of thermal diffusivity in ion-implanted nuclear materials, Sci. Rep., 5, 16042, 10.1038/srep16042
Gong, 2016, Effect of dislocations on helium retention in deformed pure iron, J. Nucl. Mater., 482, 93, 10.1016/j.jnucmat.2016.10.014
Ou, 2014, The role of helium implantation induced vacancy defect on hardening of tungsten, J. Appl. Phys., 115, 123521, 10.1063/1.4870234
Debelle, 2008, First temperature stage evolution of irradiation-induced defects in tungsten studied by positron annihilation spectroscopy, J. Nucl. Mater., 376, 216, 10.1016/j.jnucmat.2008.03.002
Debelle, 2007, Helium behaviour and vacancy defect distribution in helium implanted tungsten, J. Nucl. Mater., 362, 181, 10.1016/j.jnucmat.2007.01.021
Roedig, 2004, Post irradiation testing of samples from the irradiation experiments PARIDE 3 and PARIDE 4, J. Nucl. Mater., 329–333, 766, 10.1016/j.jnucmat.2004.04.176
Pintsuk, 2012
Oliver, 2004, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res., 19, 3, 10.1557/jmr.2004.19.1.3
Hosemann, 2009, Nanoindentation on ion irradiated steels, J. Nucl. Mater., 389, 239, 10.1016/j.jnucmat.2009.02.026
Hosemann, 2018, Small-scale mechanical testing on nuclear materials: bridging the experimental length-scale gap, Scripta Mater., 143, 161, 10.1016/j.scriptamat.2017.04.026
Nix, 1998, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solid., 46, 411, 10.1016/S0022-5096(97)00086-0
Bushby, 2011, Nanoindentation investigation of ion-irradiated Fe–Cr alloys using spherical indenters, J. Mater. Res., 27, 85, 10.1557/jmr.2011.304
Weaver, 2017, Spherical nanoindentation of proton irradiated 304 stainless steel: a comparison of small scale mechanical test techniques for measuring irradiation hardening, J. Nucl. Mater., 493, 368, 10.1016/j.jnucmat.2017.06.031
Pathak, 2017, Probing nanoscale damage gradients in ion-irradiated metals using spherical nanoindentation, Sci. Rep., 7, 11918, 10.1038/s41598-017-12071-6
Iwakiri, 1998, Hardening behavior of molybdenum by low energy He and D ion irradiation, J. Nucl. Mater., 258–263, 873, 10.1016/S0022-3115(98)00260-8
Armstrong, 2013, Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten, Appl. Phys. Lett., 102, 251901, 10.1063/1.4811825
Gao, 2017, Microstructure, hardness and defect structure of the He irradiated ODS ferritic steel, J. Alloy. Comp., 691, 653, 10.1016/j.jallcom.2016.08.312
Hunn, 2000, Helium and hydrogen induced hardening in 316LN stainless steel, J. Nucl. Mater., 282, 131, 10.1016/S0022-3115(00)00424-4
Li, 2014, Helium defects interactions and mechanism of helium bubble growth in tungsten: a molecular dynamics simulation, J. Nucl. Mater., 451, 356, 10.1016/j.jnucmat.2014.04.022
Li, 2014, Molecular dynamics simulation of helium cluster diffusion and bubble formation in bulk tungsten, J. Nucl. Mater., 455, 544, 10.1016/j.jnucmat.2014.08.028
Sandoval, 2015, Competing kinetics and He bubble morphology in W, Phys. Rev. Lett., 114, 105502, 10.1103/PhysRevLett.114.105502
Kobayashi, 2015, A molecular dynamics study on bubble growth in tungsten under helium irradiation, J. Nucl. Mater., 463, 1071, 10.1016/j.jnucmat.2014.12.049
Tian, 2004, The movement of screw dislocations in tungsten, Mater. Sci. Eng. A-Struct, 369, 210, 10.1016/j.msea.2003.11.028
Fikar, 2009, Atomistic simulation of 1/2 < 111 > screw dislocations in BCC tungsten, vol 59, 247
Xu, 2017, Atomistic simulations of screw dislocations in bcc tungsten: from core structures and static properties to interaction with vacancies, Nucl. Instrum. Meth. B, 393, 174, 10.1016/j.nimb.2016.10.025
Xie, 2017, Trapping of hydrogen and helium at an {110}< 111 > edge dislocation in tungsten, J. Nucl. Mater., 484, 270, 10.1016/j.jnucmat.2016.12.014
Bakaev, 2017, Ab initio study of interaction of helium with edge and screw dislocations in tungsten, Nucl. Instrum. Meth. B, 393, 150, 10.1016/j.nimb.2016.11.036
Ziegler, 2010, SRIM - the stopping and range of ions in matter (2010), Nucl. Instrum. Meth. B, 268, 1818, 10.1016/j.nimb.2010.02.091
Qu, 2017, Thermal conductivity measurement of the He-ion implanted layer of W using transient thermoreflectance technique, J. Nucl. Mater., 484, 382, 10.1016/j.jnucmat.2016.11.029
Harrison, 2017, A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten, J. Nucl. Mater., 495, 492, 10.1016/j.jnucmat.2017.08.033
Lu, 2015, Investigation of vacancy-type defects in helium irradiated FeCrNi alloy by slow positron beam, J. Nucl. Mater., 458, 240, 10.1016/j.jnucmat.2014.12.070
Hertz, 1896
Field, 1993, A simple predictive model for spherical indentation, J. Mater. Res., 8, 297, 10.1557/JMR.1993.0297
Basu, 2006, On the determination of spherical nanoindentation stress–strain curves, J. Mater. Res., 21, 2628, 10.1557/jmr.2006.0324
Herbert, 2001, On the measurement of stress–strain curves by spherical indentation, Thin Solid Films, 398–399, 331, 10.1016/S0040-6090(01)01439-0
Bonny, 2014, On the binding of nanometric hydrogen-helium clusters in tungsten, J. Phys. Condens. Matter, 26, 485001, 10.1088/0953-8984/26/48/485001
Terentyev, 2011, Interaction of an edge dislocation with Cu-Ni-vacancy clusters in bcc iron, J. Nucl. Mater., 419, 134, 10.1016/j.jnucmat.2011.08.021
Terentyev, 2012, Interaction of a screw dislocation with Cu-precipitates, nanovoids and Cu-vacancy clusters in BCC iron, J. Nucl. Mater., 421, 32, 10.1016/j.jnucmat.2011.11.037
Terentyev, 2010, Reactions between a 1/2 < 111 > screw dislocation and < 100 > interstitial dislocation loops in alpha-iron modelled at atomic scale, Philos. Mag, 90, 1019, 10.1080/14786430903019073
Pathak, 2014, Understanding pop-ins in spherical nanoindentation, Appl. Phys. Lett., 105, 161913, 10.1063/1.4898698
Zhu, 2016, Deuterium occupation of vacancy-type defects in argon-damaged tungsten exposed to high flux and low energy deuterium plasma, Nucl. Fusion, 56, 036010, 10.1088/0029-5515/56/3/036010
Uytdenhouwen, 2016, Mechanical and microstructural changes in tungsten due to irradiation damage, Phys. Scr., T, 167, 014007, 10.1088/0031-8949/T167/1/014007
Miyamoto, 2014, In situ transmission electron microscope observation of the formation of fuzzy structures on tungsten, Phys. Scr., T, 159, 014028, 10.1088/0031-8949/2014/T159/014028
Iwakiri, 2000, Microstructure evolution in tungsten during low-energy helium ion irradiation, J. Nucl. Mater., 283–287, 1134, 10.1016/S0022-3115(00)00289-0
Love, 1964, Dislocation pipe diffusion, Acta Metall. Mater., 12, 731, 10.1016/0001-6160(64)90220-2
Turunen, 1974, Model for dislocation climb by a pipe diffusion mechanism, Philos. Mag, 29, 701, 10.1080/14786437408222064
Cereceda, 2013, Assessment of interatomic potentials for atomistic analysis of static and dynamic properties of screw dislocations in W, J. Phys. Condens. Matter, 25, 085702, 10.1088/0953-8984/25/8/085702
Srivastava, 2013, Dislocation motion in tungsten: atomistic input to discrete dislocation simulations, Int. J. Plast., 47, 126, 10.1016/j.ijplas.2013.01.014
Groger, 2008, Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2 < 111 > screw dislocations at 0 K, Acta Mater., 56, 5401, 10.1016/j.actamat.2008.07.018
Johnson, 1985
Gao, 2015, Comparative simulation study of the structure of the plastic zone produced by nanoindentation, J. Mech. Phys. Solid., 75, 58, 10.1016/j.jmps.2014.11.005
Durst, 2005, Indentation size effect in metallic materials: correcting for the size of the plastic zone, Scripta Mater., 52, 1093, 10.1016/j.scriptamat.2005.02.009
Qiao, 2010, The influence of indenter tip rounding on the indentation size effect, Acta Mater., 58, 3690, 10.1016/j.actamat.2010.03.004
Yang, 2007, Dependence of nanohardness upon indentation size and grain size - a local examination of the interaction between dislocations and grain boundaries, Acta Mater., 55, 849, 10.1016/j.actamat.2006.09.004
Cao, 2008, Correlation between the flow stress and the nominal indentation hardness of soft metals, Scripta Mater., 59, 518, 10.1016/j.scriptamat.2008.04.039
Chicot, 2009, Hardness length-scale factor to model nano- and micro-indentation size effects, Mater. Sci. Eng. A-Struct, 499, 454, 10.1016/j.msea.2008.09.040
Gerberich, 2002, Interpretations of indentation size effects, J. Appl. Mech.-T. Asme, 69, 433, 10.1115/1.1469004