Characterization of diazotrophic root endophytes in Chinese silvergrass (Miscanthus sinensis)

Yongbin Li1, Rui Yang1, Max M. Häggblom2, Mengyan Li3, Lifang Guo1, Baoqin Li1, Max Kolton4, Zhiguo Cao5, Mohsen Solemani6, Zheng Chen7, Zhimin Xu8, Wenlong Gao4, Bei Yan4, Weimin Sun4
1Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
2Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
3Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
4Joint Laboratory for Environmental Pollution and Control, Guangdong-Hong Kong-Macao, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
5School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
6Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran
7Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
8Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China

Tóm tắt

Abstract Background Phytoremediation is a potentially cost-effective way to remediate highly contaminated mine tailing sites. However, nutrient limitations, especially the deficiency of nitrogen (N), can hinder the growth of plants and impair the phytoremediation of mine tailings. Nevertheless, pioneer plants can successfully colonize mine tailings and exhibit potential for tailing phytoremediation. Diazotrophs, especially diazotrophic endophytes, can promote the growth of their host plants. This was tested in a mine-tailing habitat by a combination of field sampling, DNA-stable isotope probing (SIP) analysis, and pot experiments. Results Bacteria belonging to the genera Herbaspirillum, Rhizobium, Devosia, Pseudomonas, Microbacterium, and Delftia are crucial endophytes for Chinese silvergrass (Miscanthus sinensis) grown in the tailing, the model pioneer plant selected in this study. Further, DNA-SIP using 15N2 identified Pseudomonas, Rhizobium, and Exiguobacterium as putative diazotrophic endophytes of M. sinensis. Metagenomic-binning suggested that these bacteria contained essential genes for nitrogen fixation and plant growth promotion. Finally, two diazotrophic endophytes Rhizobium sp. G-14 and Pseudomonas sp. Y-5 were isolated from M. sinensis. Inoculation of another pioneer plant in mine tailings, Bidens pilosa, with diazotrophic endophytes resulted in successful plant colonization, significantly increased nitrogen fixation activity, and promotion of plant growth. Conclusions This study indicated that diazotrophic endophytes have the potential to promote the growth of pioneer plant B. pilosa in mine tailings.

Từ khóa


Tài liệu tham khảo

Ceniceros-Gómez AE, Macías-Macías KY, de la Cruz-Moreno JE, Gutiérrez-Ruiz ME, Martínez-Jardines LG. Characterization of mining tailings in México for the possible recovery of strategic elements. J S Am Earth Sci. 2018;88:72–9.

Adiansyah JS, Rosano M, Vink S, Keir G. A framework for a sustainable approach to mine tailings management: disposal strategies. J Clean Prod. 2015;108:1050–62.

Babel S, Chauhan R, Ali N, Yadav V. Preparation of phosphate mine tailings and low grade rock phosphate enriched bio-fertilizer. J Sci Ind Res India. 2016.

Li Y, Gao P, Sun X, Li B, Guo L, Yang R, et al. Primary succession changes the composition and functioning of the protist community on mine tailings, especially phototrophic protists. ACS Environmental Au. 2022.

Sun X, Kong T, Li F, Häggblom MM, Kolton M, Lan L, et al. Desulfurivibrio spp. mediate sulfur-oxidation coupled to Sb(V) reduction, a novel biogeochemical process. ISME J. 2022;16(6):1547–56.

Pan H, Zhou G, Cheng Z, Yang R, He L, Zeng D, et al. Advances in geochemical survey of mine tailings project in China. J Geochem Explor. 2014;139:193–200.

Shah V, Daverey A. Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environ Technol Inno. 2020;18: 100774.

Muthusaravanan S, Sivarajasekar N, Vivek J, Paramasivan T, Naushad M, Prakashmaran J, et al. Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett. 2018;16(4):1339–59.

Cary TJ, Rylott EL, Zhang L, Routsong RM, Palazzo AJ, Strand SE, et al. Field trial demonstrating phytoremediation of the military explosive RDX by XplA/XplB-expressing switchgrass. Nat Biotechnol. 2021;39(10):1216–9.

Rodríguez N, Amils R, Jiménez-Ballesta R, Rufo L, de la Fuente V. Heavy metal content in Erica andevalensis: an endemic plant from the extreme acidic environment of Tinto River and its soils. Arid Land Res Manag. 2007;21(1):51–65.

Rufo L, de la Fuente V. Successional dynamics of the climatophile vegetation of the mining territory of the Río Tinto Basin (Huelva, Spain): soil characteristics and implications for phytoremediation. Arid Land Res Manag. 2010;24(4):301–27.

Liang JL, Liu J, Jia P, Yang TT, Zeng QW, Zhang SC, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 2020;14(6):1600–13.

Li Y, Guo L, Häggblom MM, Yang R, Li M, Sun X, et al. Serratia spp. are responsible for nitrogen fixation fueled by As(III) oxidation, a novel biogeochemical process identified in mine tailings. Environ Sci Technol. 2022;56(3):2033–43.

Huang L-N, Tang F-Z, Song Y-S, Wan C-Y, Wang S-L, Liu W, et al. Biodiversity, abundance, and activity of nitrogen-fixing bacteria during primary succession on a copper mine tailings. FEMS Microbiol Ecol. 2011;78(3):439–50.

Moynahan OS, Zabinski CA, Gannon JE. Microbial community structure and carbon-uilization diversity in a mne tailings revegetation study. Restor Ecol. 2002;10(1):77–87.

Li Y, Lin H, Gao P, Yang N, Xu R, Sun X, et al. Synergistic impacts of arsenic and antimony co-contamination on diazotrophic communities. Microb Ecol. 2022;84(1):44–58.

Li Y, Zhang M, Xu R, Lin H, Sun X, Xu F, et al. Arsenic and antimony co-contamination influences on soil microbial community composition and functions: Relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling. Environ Int. 2021;153: 106522.

Li Y, Lin H, Gao P, Yang N, Xu R, Sun X, et al. Variation in the diazotrophic community in a vertical soil profile contaminated with antimony and arsenic. Environ Pollut. 2021;291: 118248.

Sun X, Kong T, Häggblom MM, Kolton M, Li F, Dong Y, et al. Chemolithoautotropic diazotrophy dominates the nitrogen fixation process in mine tailings. Environ Sci Technol. 2020;54(10):6082–93.

Sun X, Song B, Xu R, Zhang M, Gao P, Lin H, et al. Root-associated (rhizosphere and endosphere) microbiomes of the Miscanthus sinensis and their response to the heavy metal contamination. J Environ Sci. 2021;104:387–98.

Carvalho TL, Balsemão-Pires E, Saraiva RM, Ferreira PC, Hemerly AS. Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J Exp Bot. 2014;65(19):5631–42.

Reinhold-Hurek B, Hurek T. Living inside plants: bacterial endophytes. Curr Opin Plant Biol. 2011;14(4):435–43.

Reinhold-Hurek B, Hurek T. Life in grasses: diazotrophic endophytes. Trends Microbiol. 1998;6(4):139–44.

Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E. Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol. 1994;176(7):1913–23.

Suman A, Gaur A, Shrivastava AK, Yadav RL. Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regul. 2005;47(2):155–62.

Riggs PJ, Chelius M, Iniguez AL, Kaeppler S, Triplett E. Enhanced maize productivity by inoculation with diazotrophic bacteria. Funct Plant Biol. 2001;28(9):829–36.

Terakado-Tonooka J, Ohwaki Y, Yamakawa H, Tanaka F, Yoneyama T, Fujihara S. Expressed nifH genes of endophytic bacteria detected in field-grown sweet potatoes (Ipomoea batatas L.). Microbes Environ. 2008;23(1):89–93.

Rothballer M, Schmid M, Hartmann A. Diazotrophic bacterial endophytes in Gramineaeand other plants. Prokaryotic symbionts in plants. 2007: 273–302.

Knoth JL, Kim SH, Ettl GJ, Doty SL. Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol. 2014;201(2):599–609.

Kandel S, Herschberger N, Kim S-H, Doty S. Diazotrophic endophytes of poplar and willow for growth promotion of rice plants in nitrogen-limited conditions. Crop Sci. 2015;55(4):1765–72.

Sevilla M, Burris RH, Gunapala N, Kennedy C. Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif mutant strains. Mol Plant Microbe in. 2001;14(3):358–66.

Khan Z, Guelich G, Phan H, Redman R, Doty S. Bacterial and yeast endophytes from poplar and willow promote growth in crop plants and grasses. International Scholarly Research Notices. 2012;2012.

Stewart JR, Toma Y, Fernandez FG, Nishiwaki A, Yamada T, Bollero G. The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. Gcb Bioenergy. 2009;1(2):126–53.

Zhao A, Gao L, Chen B, Feng L. Phytoremediation potential of miscanthus sinensis for mercury-polluted sites and its impacts on soil microbial community. Environ Sci Pollut R. 2019;26(34):34818–29.

Li Y, Wang M, Chen S. Application of N2-fixing Paenibacillus triticisoli BJ-18 changes the compositions and functions of the bacterial, diazotrophic, and fungal microbiomes in the rhizosphere and root/shoot endosphere of wheat under field conditions. Biol Fert Soils. 2021;57(3):347–62.

Li Y, Yang R, Guo L, Gao W, Su P, Xu Z, et al. The composition, biotic network, and assembly of plastisphere protistan taxonomic and functional communities in plastic-mulching croplands. J Hazard Mater. 2022;430: 128390.

Custer J. Separation of viable microbes from soil matrices. 2019.

Morono Y, Terada T, Kallmeyer J, Inagaki F. An improved cell separation technique for marine subsurface sediments: applications for high-throughput analysis using flow cytometry and cell sorting. Environ Microbiol. 2013;15(10):2841–9.

McNees CR, Law AD, Moe LA. Characterization of endophytic microbial communities in store-bought kale evaluated by different plant tissue homogenization methods. Phytobiomes J. 2020;4(3):211–6.

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3.

Li Y, Li Q, Chen S. Diazotroph Paenibacillus triticisoli BJ-18 drives the variation in bacterial, diazotrophic and fungal communities in the rhizosphere and root/shoot endosphere of maize. Int J Mol Sci. 2021;22(3):1460.

Liu X, Li Q, Li Y, Guan G, Chen S. Paenibacillus strains with nitrogen fixation and multiple beneficial properties for promoting plant growth. PeerJ. 2019;7: e7445.

Hu A, Ju F, Hou L, Li J, Yang X, Wang H, et al. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environ Microbiol. 2017;19(12):4993–5009.

Zhang M, Kolton M, Li Z, Lin H, Li F, Lu G, et al. Bacteria responsible for antimonite oxidation in antimony-contaminated soil revealed by DNA-SIP coupled to metagenomics. Fems Microbiol Ecol. 2021;97(5):fiab057.

Jiang H, Zhao X, Fang J, Xiao Y. Physiological responses and metal uptake of Miscanthus under cadmium/arsenic stress. Environ Sci Pollut R. 2018;25(28):28275–84.

Huang C-L, Sarkar R, Hsu T-W, Yang C-F, Chien C-H, Chang W-C, et al. Endophytic microbiome of biofuel plant Miscanthus sinensis (Poaceae) interacts with environmental gradients. Microb Ecol. 2020;80(1):133–44.

Risely A. Applying the core microbiome to understand host–microbe systems. J Anim Ecol. 2020;89(7):1549–58.

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.

Pfeiffer S, Mitter B, Oswald A, Schloter-Hai B, Schloter M, Declerck S, et al. Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiol Ecol. 2017;93(2):fiw242.

Shafquat A, Joice R, Simmons SL, Huttenhower C. Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol. 2014;22(5):261–6.

Gulati A, Sood S, Rahi P, Thakur R, Devi S, Chawla I. Diversity analysis of diazotrophic bacteria associated with the roots of tea (Camellia sinensis (L.) O. Kuntze). J Microbiol Biotechn. 2011;21(6):545–55.

Jha PN, Gomaa AB, Yanni YG, El-Saadany AY, Stedtfeld TM, Stedtfeld RD, et al. Alterations in the endophyte-enriched root-associated microbiome of rice receiving growth-promoting treatments of urea fertilizer and Rhizobium biofertilizer. Microb Ecol. 2020;79(2):367–82.

Rajendran G, Patel MH, Joshi SJ. Isolation and characterization of nodule-associated Exiguobacterium sp. from the root nodules of fenugreek (Trigonella foenum-graecum) and their possible role in plant growth promotion. Int J Microbiol. 2012;2012.

Kumar A, Tripti, Voropaeva O, Maleva M, Panikovskaya K, Borisova G, et al. Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus. Chemosphere. 2021;266:128983.

Li Y, Li Y, Zhang H, Wang M, Chen S. Diazotrophic Paenibacillus beijingensis BJ-18 provides nitrogen for plant and promotes plant growth, nitrogen uptake and metabolism. Front Microbiol. 2019;10:1119.

Hou X, Liu S, Zhao S, Beazley R, Cheng F, Wu X, et al. Selection of suitable species as a key factor for vegetation restoration of degraded areas in an open-pit manganese-ore mine in Southern China using multivariate-analysis methods. Land Degrad Dev. 2019;30(8):942–50.

Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot. 2013;100(9):1738–50.

Kandel SL, Joubert PM, Doty SL. Bacterial endophyte colonization and distribution within plants. Microorganisms. 2017;5(4):77.

Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett. 2008;278(1):1–9.

Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem. 2010;42(5):669–78.

Kawasaki A, Donn S, Ryan PR, Mathesius U, Devilla R, Jones A, et al. Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PLoS ONE. 2016;11(10): e0164533.

Pétriacq P, Williams A, Cotton A, McFarlane AE, Rolfe SA, Ton J. Metabolite profiling of non-sterile rhizosphere soil. Plant J. 2017;92(1):147–62.

Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488(7409):91–5.

Zúñiga A, Poupin MJ, Donoso R, Ledger T, Guiliani N, Gutiérrez RA, et al. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol Plant Microbe in. 2013;26(5):546–53.

Meneses CH, Rouws LF, Simões-Araújo JL, Vidal MS, Baldani JI. Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant Microbe in. 2011;24(12):1448–58.

Janczarek M, Rachwał K, Cieśla J, Ginalska G, Bieganowski A. Production of exopolysaccharide by Rhizobium leguminosarum bv. trifolii and its role in bacterial attachment and surface properties. Plant Soil. 2015;388(1):211–227.

Meneses C, Gonçalves T, Alquéres S, Rouws L, Serrato R, Vidal M, et al. Gluconacetobacter diazotrophicus exopolysaccharide protects bacterial cells against oxidative stress in vitro and during rice plant colonization. Plant Soil. 2017;416(1):133–47.

Tripathy BC, Oelmüller R. Reactive oxygen species generation and signaling in plants. Plant Signal Behav. 2012;7(12):1621–33.

Alquéres S, Meneses C, Rouws L, Rothballer M, Baldani I, Schmid M, et al. The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Mol Plant Microbe in. 2013;26(8):937–45.

Quinn LD, Allen DJ, Stewart JR. Invasiveness potential of Miscanthus sinensis: implications for bioenergy production in the United States. GCB Bioenergy. 2010;2(6):310–20.