Characterization of cuttlebone for a biomimetic design of cellular structures
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sherrard K.M.: Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). Biol. Bull. 198, 404–414 (2000)
Birchall J.D., Thomas N.L.: On the architecture and function of cuttlefish bone. J. Mater. Sci. 18, 2081–2086 (1983)
Re P., Narciso L.: Growth and cuttlebone microstructure of juvenile cuttlefish, sepia-officinalis, under controlled conditions. J. Exp. Mar. Biol. Ecol. 177, 73–78 (1994)
Gower D., Vincent J.F.V.: The mechanical design of the cuttlebone and its bathymetric implications. Biomimetics 4, 37–57 (1996)
Culverwell E., Wimbush S.C., Hall S.R.: Biotemplated synthesis of an ordered macroporous superconductor with high critical current density using a cuttlebone template. Chem. Commun. 9, 1055–1057 (2008)
Rocha J.H.G. et al.: Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones. J. Biomed. Mater. Res. A 77, 160–168 (2006)
Kannan S. et al.: Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Acta Biomater. 3, 243–249 (2007)
Rocha J.H.G. et al.: Hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. J. Mater. Chem. 15, 5007–5011 (2005)
Hutmacher D.W., Sittinger M., Risbud M.V.: Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22, 354–362 (2004)
Hassani B., Hinton E.: A review of homogenization and topology optimization I—homogenization theory for media with periodic structure. Comput. Struct. 69, 707–717 (1998)
Feng X.Q., Mai Y.W., Qin Q.H.: A micromechanical model for interpenetrating multiphase composites. Comput. Mater. Sci. 28, 486–493 (2003)
Bendsoe M.P., Kikuchi N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)
Sigmund O.: Materials with prescribed constitutive parameters—an inverse homogenization problem. Int. J. Solids Struct. 31, 2313–2329 (1994)
Zhou S.W., Li Q.: Design of graded two-phase microstructures for tailored elasticity gradients. J. Mater. Sci. 43, 5157–5167 (2008)
Kruijf N. et al.: Topological design of structures and composite materials with multiobjectives. Int. J. Solids Struct. 44, 7092–7109 (2007)
Bendsoe M.P., Sigmund O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69, 635–654 (1999)
Zhou S.W., Li Q.: Computational design of microstructural composites with tailored thermal conductivity. Numer. Heat Transf. A 54, 686–708 (2008)
Zhou S.W., Li Q.: A microstructure diagram for known bounds in conductivity. J. Mater. Res. 23, 798–811 (2008)
Svanberg K.: The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)
Haug E.J., Choi K.K., Komkov V.: Design Sensitivity Analysis of Structural Systems. United States: Academic Press, Orlando (1986)
Sigmund O.: On the design of compliant mechanisms using topology optimization. Mech. Struct. Mach. 25, 493–524 (1997)
Haber R.B., Jog C.S., Bendsoe M.P.: A new approach to variable-topology shape design using a constraint on perimeter. Struct. Optim. 11, 1–12 (1996)
Fernandes P., Guedes J.M., Rodrigues H.: Topology optimization of three-dimensional linear elastic structures with a constraint on “perimeter”. Comput. Struct. 73, 583–594 (2006)
Aubert G., Kornprobst P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Appl. Math. Sci. Springer, New York (2006)
Zhou S.W., Li Q.: The relation of constant mean curvature surfaces to multiphase composites with extremal thermal conductivity. J. Phys. D Appl. Phys. 40, 6083–6093 (2007)
Zhou S.W., Li Q.: Computational design of multi-phase microstructural materials for extremal conductivity. Comput. Mater. Sci. 43, 549–564 (2008)
Zhou S.W., Li Q.: Design of graded two-phase microstructures for tailored elasticity gradients. J. Mater. Sci. 43, 5157–5167 (2008)