Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đặc trưng của proteoglycan sulfate chondroitin và sulfate dermatan trong các ma trận ngoại bào của mạch máu dây rốn người và tấm nhầy Wharton
Tóm tắt
Proteoglycan sulfate chondroitin/dermatan (CS/DSPGs) từ tĩnh mạch dây rốn người, động mạch và ma trận tấm nhầy Wharton được phân tích và xác định bằng phương pháp nhuộm miễn dịch mô học. Các CS/DSPGs được xác định là decorin và biglycan với các protein lõi có kích thước 43-48 kDa và phân bố khắp dây rốn. Một dạng rút gọn của decorin chỉ chứa khoảng 14 kDa phần NH2-đầu của protein lõi chỉ được tìm thấy độc quyền trong tĩnh mạch. Các proteoglycan, bất kể vị trí, đều có hai loại chuỗi CS/DS, một với khoảng 90% CS và 10% DS và một với khoảng 65% CS và 35% DS. Các chuỗi glycosaminoglycan (GAG) của decorin dạng rút gọn gồm khoảng 53% CS và 47% DS. Cả decorin và biglycan, bao gồm cả dạng rút gọn của decorin, đều có thể liên kết hiệu quả với collagen I và fibronectin. Decorin và biglycan với khoảng 10% DS và 90% CS liên kết lỏng lẻo trong các ma trận ngoại bào, trong khi những chuỗi có khoảng 35% DS thì liên kết chặt chẽ. Tất cả các dữ liệu này cho thấy rằng, các chuỗi GAG với 35-47% DS nhưng không phải là những chuỗi với 10% DS, tương tác chặt chẽ với ma trận. Dữ liệu của chúng tôi cũng cho thấy rằng thành phần chuỗi GAG là một yếu tố quan trọng trong việc liên kết của decorin và biglycan với protein ma trận. Sự biểu hiện của decorin và biglycan với tỷ lệ CS/DS khác biệt rõ rệt ngụ ý các chức năng sinh học linh hoạt cho các PG này trong dây rốn. Sự xuất hiện của dạng rút gọn của decorin chỉ trong tĩnh mạch dây rốn gợi ý một vai trò chức năng cụ thể.
Từ khóa
#Proteoglycan #chondroitin sulfate #dermatan sulfate #ma trận ngoại bào #dây rốn người #tĩnh mạch dây rốn.Tài liệu tham khảo
Hascall VC, Hascall GK, Proteoglycan. In Cell Biology of Extra-cellular Matrix, edited by Hay ED (Plenum Publishing Corp., New York, 1981), pp. 39-63.
Hassell JR, Kimura JH, Hascall VC, Proteoglycan core protein families, Annu Rev Biochem 55, 539-67 (1986).
Iozzo RV, Matrix proteoglycans: From molecular design to cellular function, Annu Rev Biochem 67, 609-52 (1998).
Bidanset DJ, Guidry C, Rosenberg LC, Choi HU, Timpl R, Hook M, Binding of the proteoglycan decorin to collagen type VI, J Biol Chem 267, 5250-6 (1992).
Kawashima H, Hirose M, Hirose J, Nagakubo D, Plaas AHK, Miyasaka M, Binding of a large chondroitin sulfate/dermatan sul-fate proteoglycan, versican, to L-selectin, P-selectin, and CD44, J Biol Chem 275, 35448-56 (2000).
Lewandowska K, Choi RU, Rosenberg LC, Zardi L, Culp LA, Fibronectin-mediated adhesion of fibroblasts: Inhibition by dermatan sulfate proteoglycan and evidence for a cryptic glycosaminoglycans-binding domain, J Cell Biol 105, 1443-54 (1987).
Pogany G, Hernandez DJ, Vogel KG, The in vitro interaction of proteoglycans with type I collagen is modulated by phosphate, Arch Biochem Biophs 313, 102-11 (1994).
Schmidt G, Robenek H, Harrach B, Glossl J, Nolte V, Hormann H, Richter H, Kresse H, Interaction of small dermatan sulfate proteo-glycans from fibroblasts with fibronectin, J Cell Biol 104, 1683-91 (1987).
Vynios DH, Papageorgakopoulou N, Sazakli H, Tsiganos CP, The interactions of cartilage proteoglycans with collagens are deter-mined by their structure, Biochimie 83, 899-906 (2001).
Gordon JR, Bernfield MR, The basal lamina of the postnatal mammary epithelium contains glycosaminoglycans in a precise ultra-structural organization, Dev Biol 74, 118-35 (1980).
Hirose J, Kawashima H, Yoshie O, Tashiro K, Miyasaka M, Versi-can interacts with chemokines and modulates cellular responses, J Biol Chem 276, 5228-34 (2001).
Koda JE, Rapraeger A, Bernfield M,Heparan sulfate proteoglycans from mouse mammary epithelial cells. Cell surface proteoglycan as a receptor for interstitial collagens, J Biol Chem 260, 8157-62 (1985).
Rapraeger A, Jalkanen M, Bernfield MR, Cell surface proteogly-can associates with the cytoskeleton at the basolateral cell sur-face of mouse mammary epithelial cells, J Cell Biol 103, 2683-96 (1986).
Fisher LW, Termine JD, Young MF, Deduced protein sequence of bone small proteoglycan I (biglycan) shows homology with proteoglycan II (decorin) and several nonconnective tissue proteins in a variety of species, J Biol Chem 264, 4571-6 (1989).
Coster L, Fransson LA, Sheehan J, Nieduszynski IA, Phelps CF, Self-association of dermatan sulphate proteoglycans from bovine sclera, Biochem J 197, 483-90 (1981).
Fransson LA, Coster L, Malmstrom A, Sheehan JK, Self-association of scleral proteodermatan sulfate. Evidence for interac-tion via the dermatan sulfate side chains, J Biol Chem 257, 6333-8 (1982).
Merle B, Durussel L, Delmas PD, Clezardin P, Decorin inhibits cell migration through a process requiring its glycosaminoglycan side chain, J Cell Biochem 75, 538-46 (1999).
Cardoso LE, Erlich RB, Rudge MC, Peracoli JC, Mourao PA, A comparative analysis of glycosaminoglycans from human um-bilical arteries in normal subjects and in pathological conditions affecting pregnancy, Lab Invest 67, 588-95 (1992).
Gogiel T, Bankowski E, Jaworski S, Proteoglycans of Wharton's jelly, Int J Biochem Cell Biol 35, 1461-9 (2003).
Gogiel T, Jaworski S, Proteoglycans of human umbilical cord arteries, Acta Biochim Pol 47, 1081-91 (2000).
Griesmacher A, Hennes R, Keller R, Greiling H, Proteoglycans from human vein endothelial cells, Eur J Biochem 168, 95-101 (1987).
Inoue S, Iwasaki M, Dermatan sulfate-chondroitin sulfate copolymers from umbilical cord-isolation and characterization, J Biochem 80, 513-24 (1976).
Valiyaveettil M, Achur RN, Muthusamy A, Gowda DC, Chon-droitin sulfate proteoglycans of the endothelia of human umbilical vein and arteries and assessment for the adherence of Plasmod-ium falciparum-infected erythrocytes, Mol Biochem Parasitol 134, 115-26 (2004).
Achur RN, Valiyaveettil M, Alkhalil A, Ockenhouse CF, Gowda DC, Characterization of proteoglycans of human placenta and identification of unique chondroitin sulfate proteoglycans of the intervillous spaces that mediate the adherence of Plasmodium falciparum-infected erythrocytes to the placenta, J Biol Chem 275, 40344-56 (2000).
Dische Z, A new specific color reaction of hexuronic acids, J Biol Chem 167, 189-98 (1947).
Hatae Y, Makita A, Colorimetric determination of hyaluronate degraded by Streptomyces hyaluronidase, Anal Biochem 64, 30-6 (1975).
Hovingh P, Linker A, The disaccharide repeating-units of heparan sulfate, Carbohydr Res 37, 181-92 (1974).
Yphantis DA, Equilibrium centrifugation in dilute solution, Biochem 3, 297-317 (1964).
Carlson DM, Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins, J Biol Chem 243, 616-26 (1968).
Oike Y, Kimata K, Shinomura T, Nakazawa K, Suzuki S, Structural analysis of chick-embryo cartilage proteoglycan by selective degradation with chondroitin lyases (chondroitinases) and endo-beta-D-galactosidase (keratanase), Biochem J 191, 193-207 (1980).
Saito H, Yamagata T, Suzuki S, Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates, J Biol Chem 243, 1536-42 (1968).
Laemmli UK, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680-5 (1970).
Krueger RC Jr, Schwartz NB, An improved method of sequential Alcian blue and ammoniacal silver staining of chondroitin sulfate proteoglycan in polyacrylamide gels, Anal Biochem 167, 295-300 (1987).
Fisher LW, Stubbs III JT, Young MF, Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins, Acta Orthop Scand Suppl 266, 61-5 (1995).
Hardy MR, Monosaccharide analysis of glycoconjgates by high-performance anion-exchange chromatography with pulsed amper-ometric detection, Methods Enzymol 179, 76-82 (1989).
Muthusamy A, Achur RN, Bhavanandan VP, Fouda GG, Taylor DW, Gowda DC, Plasmodium falciparum-Infected erythrocytes adhere both in the intervillous space and on the villous surface of human placenta by binding to the low-sulfated chondroitin sulfate proteoglycan receptor, Am J Pathol 164, 2013-25 (2004).
Puch S, Bhavanandan VP, Endogenous carbohydrate-binding pro-teins of rabbit and human bladder, Urology 53, 848-52 (1999).
Kirkwood BR, Essentials of Medical Statistics (Blackwell Science Ltd., Cambridge, MA, 1996), pp. 1-234.
Brennan MJ, Oldberg A, Pierschbacher MD, Ruoslahti E, Chon-droitin/ dermatan sulfate proteoglycan in human fetal membranes, Demonstration of an antigenically similar proteoglycan in fibrob-lasts, J Biol Chem 259, 13742-50 (1984).
Krusius T, Ruoslahti E, Primary structure of an extracellular matrix proteoglycan core protein deduced from cloned cDNA, Proc Natl Acad Sci USA 83, 7683-7 (1986).
Choi HU, Johnson TL, Pal S, Tang LH, Rosenberg L, Neame PJ, Characterization of the dermatan sulfate proteoglycans, DS-PGI and DS-PGII, from bovine articular cartilage and skin isolated by octyl-sepharose chromatography, J Biol Chem 264, 2876-84 (1989).
Fisher LW, The human genes for biglycan and decorin. In Der-matan Sulfate Proteoglycans, edited by Scott JE (Portland Press Inc., NC, 1993), pp. 103-14.
Gendelman R, Burton-Wurster NI, MacLeod JN, Lust G, The cartilage-specific fibronectin isoform has a high affinity binding site for the small proteoglycan decorin, J Biol Chem 278, 11175-81 (2003).
Svensson L, Heinegard D, Oldberg A, Decorin-binding sites for collagen type I are mainly located in leucine-rich repeats 4-5, J Biol Chem 270, 20712-6 (1995).
Fisher LW, Anchor and Adhesion proteins. In Extracellular Matrix, edited by Kreis T, Vale R (Sambrook and Tooze Publication, Oxford University Press, 1999), pp. 365-8.
Fisher LW, Anchor, and Adhesion proteins. In Extracellular Matrix, edited by Kreis T, Vale R (Sambrook and Tooze Publication, Oxford University Press, 1999), pp. 408-11.
Weber IT, Harrison RW, Iozzo RV, Model structure of decorin and implications for collagen fibrillogenesis, J Biol Chem 271, 31767-70 (1996).
Fransson LA, Coster L, Interaction between dermatan sulfate chains. II. Structural studies on aggregating glycan chains and oligosaccharides with affinity for dermatan sulfate-substituted agarose, Biochim Biophys Acta 582, 132-44 (1979).
Garg HG, Lippay EW, Burd DA, Neame PJ, Purification and char-acterization of iduronic acid-rich and glucuronic acid-rich proteo-glycans implicated in human post-burn keloid scar, Carbohydr Res 207, 295-305 (1990).
Matsunaga E, Shinkai H, Two species of dermatan sulfate pro-teoglycans with different molecular sizes from newborn calf skin, J Invest Dermatol 87, 221-6 (1986).
Kamada A, Tamura I, Okazaki J, Matsukawa F, Sakaki T, Characteristics and localization of rat submandibular gland proteoglycans, Arch Oral Biol 41, 951-8 (1996).
Rada JA, Cornuet PK, Hassell JR, Regulation of corneal collagen fibrillogenesis in vitro by corneal proteoglycan (lumican and decorin) core proteins, Exp Eye Res 56, 635-48 (1993).
Carrino DA, Onnerfjord P, Sandy JD, Cs-Szabo G, Scott PG, Sorrell JM, Heinegard D, Caplan AI, Age-related changes in the proteoglycans of human skin, Specific cleavage of decorin to yield a major catabolic fragment in adult skin, J Biol Chem 278, 17566-72 (2003).
