Characterization of cellulose structure of Populus plants modified in candidate cellulose biosynthesis genes
Tài liệu tham khảo
Yuan, 2008, Plants to power: bioenergy to fuel the future, Trends Plant Sci., 13, 421, 10.1016/j.tplants.2008.06.001
Hill, 2006, Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels, PNAS, 103, 11206, 10.1073/pnas.0604600103
Gray, 2006, Bioethanol. Curr. Opin. Chem. Biol., 10, 141, 10.1016/j.cbpa.2006.02.035
Ragauskas, 2006, The path forward for biofuels and biomaterials, Science, 311, 484, 10.1126/science.1114736
Feldman, 1984, 613
Hall, 2010, Cellulose crystallinity–a key predictor of the enzymatic hydrolysis rate, FEBS J, 277, 1571, 10.1111/j.1742-4658.2010.07585.x
Chauve, 2013, Evolution and impact of cellulose architecture during enzymatic hydrolysis by fungal cellulases, Adv. Biosci. Biotechnol., 04, 1095, 10.4236/abb.2013.412146
Rubin, 2008, Genomics of cellulosic biofuels, Nature, 454, 841, 10.1038/nature07190
Pan, 2006, Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity, J. Agric. Food Chem., 54, 5806, 10.1021/jf0605392
Wyman, 2005, Coordinated development of leading biomass pretreatment technologies, Bioresour. Technol., 96, 1959, 10.1016/j.biortech.2005.01.010
Kumar, 2009, Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies, Bioresour. Technol., 100, 3948, 10.1016/j.biortech.2009.01.075
Gressel, 2008, Transgenics are imperative for biofuel crops, Plant Sci., 174, 246, 10.1016/j.plantsci.2007.11.009
Fu, 2011, Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass, PNAS, 108, 3803, 10.1073/pnas.1100310108
Maloney, 2012, The endo-1,4-β-glucanase Korrigan exhibits functional conservation between gymnosperms and angiosperms and is required for proper cell wall formation in gymnosperms, New Phytol., 193, 1076, 10.1111/j.1469-8137.2011.03998.x
Vailhé, 1996, Effect of modification of the O-Methyltransferase activity on cell wall composition, ultrastructure and degradability of transgenic tobacco, J. Sci. Food Agric., 72, 385, 10.1002/(SICI)1097-0010(199611)72:3<385::AID-JSFA664>3.0.CO;2-L
Guo, 2001, Downregulation of caffeic acid 3-O-Methyltransferase and caffeoyl CoA 3-O-Methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the Biosynthesis of G and S lignin, Plant Cell Online, 13, 73, 10.1105/tpc.13.1.73
Dinus, 2000
Foston, 2011, Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance, Energy Environ. Sci., 4, 4962, 10.1039/c1ee02073k
Somerville, 2006, Cellulose synthesis in higher plants, Annu. Rev. Cell Dev. Biol., 22, 53, 10.1146/annurev.cellbio.22.022206.160206
Sato, 2001, Role of the putative membrane-bound endo-1,4-β-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana, Plant Cell Physiol., 42, 251, 10.1093/pcp/pce045
Sturm, 1999, The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning, Trends Plant Sci., 4, 401, 10.1016/S1360-1385(99)01470-3
Delmer, 1999, Cellulose biosynthesis: exciting times for a difficult field of study, Ann. Rev. Plant Physiol. Plant Mol. Bio, 50, 245, 10.1146/annurev.arplant.50.1.245
Peng, 2002, Sitosterol-β-glucoside as primer for cellulose synthesis in plants, Science, 295, 147, 10.1126/science.1064281
Szyjanowicz, 2004, The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana, Plant J Cell Mol Bio, 37, 730, 10.1111/j.1365-313X.2003.02000.x
Maloney, 2010, Characterization and varied expression of a membrane-bound endo-beta-1,4-glucanase in hybrid poplar, Plant Biotechnol. J., 8, 294, 10.1111/j.1467-7652.2009.00483.x
Molhoj, 2002, Towards understanding the role of membrane-bound endo-beta-1,4-glucanases in cellulose biosynthesis, Plant Cell Physiol., 43, 1399, 10.1093/pcp/pcf163
Foston, 2010, Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass, Biomass Bioenergy, 34, 1885, 10.1016/j.biombioe.2010.07.023
Kalluri, 2016, Down-regulation of an endo-β-1,4-glucanase gene impacts carbon partitioning, mycorrhizal colonization and biomass production, Front. Plant Sci., 10.3389/fpls.2016.01455
Kumar, 2013, Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass, Bioresour. Technol., 130, 372, 10.1016/j.biortech.2012.12.028
Wood, 1986, The effect of precipitation on the molecular weight distribution of cellulose tricarbanilate, J. Appl. Polym. Sci., 32, 3703, 10.1002/app.1986.070320225
Xue, 2012, Structural characterization of hemicelluloses fractionated by graded ethanol precipitation from Pinus yunnanensis, Carbohydr. Res., 352, 159, 10.1016/j.carres.2012.02.004
Zhang, 2010, Isolation of cellulolytic enzyme lignin from wood preswollen/dissolved in dimethyl sulfoxide/N-methylimidazole, J. Agric. Food Chem., 58, 3446, 10.1021/jf903998d
Berlin, 2006, Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations, J. Biotechnol., 125, 198, 10.1016/j.jbiotec.2006.02.021
Park, 2010, Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Biotechnol. Biofuels, 3, 10, 10.1186/1754-6834-3-10
Wickholm, 1998, Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy, Carbohydr. Res., 312, 123, 10.1016/S0008-6215(98)00236-5
Larsson, 1997, A CP/MAS13C NMR investigation of molecular ordering in celluloses, Carbohydr. Res., 302, 19, 10.1016/S0008-6215(97)00130-4
Takahashi, 2009, KORRIGAN1 and its aspen homolog PttCel9A1 decrease cellulose crystallinity in Arabidopsis stems, Plant Cell Physiol., 50, 1099, 10.1093/pcp/pcp062
Lennholm, 1994, Determination of cellulose Iα and Iβ in lignocellulosic materials, Carbohydr. Res., 261, 119, 10.1016/0008-6215(94)80011-1
Newman, 1998, Evidence of assignment of 13C NMR signals to cellulose crystallite surfaces in wood, pulp and isolated cellulose, Holzforsch. - Int. J. Biol. Chem. Phys. Technol. Wood, 157
Heux, 1999, Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR, Carbohydr. Polym., 40, 115, 10.1016/S0144-8617(99)00051-X
Zuckerstätter, 2009, vol. 87, 38
Sannigrahi, 2010, Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine, Carbohydr. Res., 345, 965, 10.1016/j.carres.2010.02.010
Pu, 2006, CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp, Carbohydr. Res., 341, 591, 10.1016/j.carres.2005.12.012
Newman, 1999, Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths, Solid State Nucl. Magn. Reson, 15, 21, 10.1016/S0926-2040(99)00043-0
Peng, 2002, Sitosterol-beta-glucoside as primer for cellulose synthesis in plants, Science, 295, 147, 10.1126/science.1064281
Taylor, 2008, Cellulose biosynthesis and deposition in higher plants, New Phytol., 178, 239, 10.1111/j.1469-8137.2008.02385.x
Ding, 2006, The maize primary cell wall microfibril: a new model derived from direct visualization, J. Agric. Food Chem., 54, 597, 10.1021/jf051851z
Zhang, 2004, Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems, Biotechnol. Bioeng., 88, 797, 10.1002/bit.20282
Wood, 1975, Properties and mode of action of cellulases, Biotechnol. Bioeng. Symp., 111
Mølhøj, 2002, Towards understanding the role of membrane-bound Endo-β-1,4-glucanases in cellulose biosynthesis, Plant Cell Physiol., 43, 1399, 10.1093/pcp/pcf163
Samuel, 2011, HSQC (heteronuclear single quantum coherence) 13C–1H correlation spectra of whole biomass in perdeuterated pyridinium chloride–DMSO system: an effective tool for evaluating pretreatment, Fuel, 90, 2836, 10.1016/j.fuel.2011.04.021
Pu, 2009, NMR characterization of C3H and HCT down-regulated alfalfa lignin, Bioenerg. Res., 2, 198, 10.1007/s12155-009-9056-8