Characterization of bio-oil and its sub-fractions from pyrolysis of Scenedesmus dimorphus
Tài liệu tham khảo
Morali, 2015, Pyrolysis of hornbeam shell (Carpinus betulusL.) in a fixed bed reactor: characterization of bio-oil and bio-char, Fuel, 150, 672, 10.1016/j.fuel.2015.02.095
Brennan, 2010, Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Energy Rev., 14, 557, 10.1016/j.rser.2009.10.009
Hu, 2008, Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances, Plant J., 54, 621, 10.1111/j.1365-313X.2008.03492.x
Chisti, 2007, Biodiesel from microalgae, Biotechnol. Adv., 25, 294, 10.1016/j.biotechadv.2007.02.001
Sudjito, 2014, Potential and properties of marine microalgae Nannochloropsis oculataas biomass fuel feedstock, Int. J. Energy Environ. Eng., 5, 279, 10.1007/s40095-014-0138-9
Chutia, 2014, Characterization of liquid and solid product from pyrolysis of Pongamia glabra deoiled cake, Bioresour. Technol., 165, 336, 10.1016/j.biortech.2014.03.118
Chan, 2007, Agronomic values of greenwaste biochar as a soil amendment, Soil Res., 45, 629, 10.1071/SR07109
Lehmann, 2007, Bio-energy in the black, Front. Ecol. Environ., 5, 381, 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
Jeffery, 2011, A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosyst. Environ., 144, 175, 10.1016/j.agee.2011.08.015
Wu, 1996, High yield of hydrocarbon gases resulting from pyrolysis of yellow heterotrophic and bacterially degraded Chlorella protothecoides, J. Appl. Phycol., 8, 181, 10.1007/BF02184969
Peng, 2000, Effects of temperature and holding time on production of renewable fuel from pyrolysis of Chlorella protothecoides, J. Appl. Phycol., 12, 147, 10.1023/A:1008115025002
Peng, 2001, Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis, Bioresour. Technol., 80, 1, 10.1016/S0960-8524(01)00072-4
Miao, 2004, Fast pyrolysis of microalgae to produce renewable fuels, J. Anal. Appl. Pyrolysis, 71, 855, 10.1016/j.jaap.2003.11.004
Grierson, 2009, Thermal characterisation of microalgae under slow pyrolysis conditions, J. Anal. Appl. Pyrolysis, 85, 118, 10.1016/j.jaap.2008.10.003
Shuping, 2010, Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyser, Bioresour. Technol., 101, 359, 10.1016/j.biortech.2009.08.020
Miao, 2004, Fast pyrolysis of microalgae to produce renewable fuels, J. Anal. Appl. Pyrolysis, 71, 855, 10.1016/j.jaap.2003.11.004
Chaiwong, 2013, Study of bio-oil and bio-char production from algae by slow pyrolysis, Biomass bioenergy, 56, 600, 10.1016/j.biombioe.2013.05.035
Miao, 2004, High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides, J. Biotechnol., 110, 85, 10.1016/j.jbiotec.2004.01.013
Ferreira, 2014, Bio-oil and bio-char characterization from microalgal biomass, MEFTE, 11
Phukan, 2011, Microalgae Chlorella as a potential bio-energy feedstock, Appl. Energy, 88, 3307, 10.1016/j.apenergy.2010.11.026
Goswami, 2012, Microalgal resources in Chandrapur area, North-East, Assam, India: a perspective for Industrial refinement system and a boon for alternative energy generation and mitigation of green house gases, Arch. Appl. Sci. Res., 4, 795
Okkou, 2015, Growth promotion of indigenous Scenedesmus dimorphus strain under different conditions using stirred tank photobioreactor, Int. J. ChemTech Res., 8, 221
Cicci, 2014, Production of the freshwater microalgae Scenedesmus dimorphusand arthrospira platensis by using cattle digestate, Chem. Eng. Trans., 38, 85
Pons, 1980, A method for the simultaneous determination of total carbohydrate and glycerol in biological samples with the anthrone reagent, J. Biochem. Biophys. Methods, 4, 227, 10.1016/0165-022X(81)90060-9
Lowry, 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265, 10.1016/S0021-9258(19)52451-6
Bligh, 1959, A rapid method for total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911, 10.1139/o59-099
Bordoloi, 2015, Pyrolysis ofMesua ferrea and Pongamia glabraseed cover: characterization of bio-oil and its sub-fractions, Bioresour. Technol., 178, 83, 10.1016/j.biortech.2014.10.079
Naik, 2010, Supercritical CO2 fractionation of bio-oil produced from wheat–hemlock biomass, Bioresour. Technol., 101, 7605, 10.1016/j.biortech.2010.04.024
Harvey, 2012, An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (Biochars), Environ. Sci. Technol., 46, 1415, 10.1021/es2040398
Zhao, 2013, Heterogeneity of biochar properties as a function of feedstock sources and production temperatures, J. Hazard. Mater., 256–257, 1
Nayan, 2012, Characterization of the liquid product obtained by pyrolysis of karanja seed, Bioresour. Technol., 124, 186, 10.1016/j.biortech.2012.08.004
Singh, 2014, Pyrolysis of saal seed to liquid product, Bioresour. Technol., 151, 432, 10.1016/j.biortech.2013.10.087
Kumar, 2015, Thermal behavior and pyrolytic characteristics of freshwater Scenedesmus sp, Biomass. Energy Sources Part A, 37, 1383, 10.1080/15567036.2011.605428
Agrawal, 2013, A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis, Biresource Technol., 128, 72, 10.1016/j.biortech.2012.10.043
Uzun, 2010, Synthetic fuel production from tea waste: characterisation of bio-oil and bio-char, Fuel, 89, 176, 10.1016/j.fuel.2009.08.040
Shadangi, 2014, Thermal and catalytic pyrolysis of Karanja seed to produce liquid fuel, Fuel, 115, 434, 10.1016/j.fuel.2013.07.053
Majhi, 2015, The production and evaluation of bio-oil obtained from the Jatropha curcas cake, Energy Sources Part A Recovery, Util. Environ. Eff., 37, 1782, 10.1080/15567036.2011.645120
Horne, 1996, Influence of temperature on the products from the flash pyrolysis of biomass, Fuel, 75, 1051, 10.1016/0016-2361(96)00081-6
Duman, 2011, The slow and fast pyrolysis of cherry seed, Bioresour. Technol., 102, 1869, 10.1016/j.biortech.2010.07.051
Saikia, 2015, Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials, Bioresour. Technol., 188, 265, 10.1016/j.biortech.2015.01.089
Chena, 2015, Thermochemical conversion of microalgal biomass into biofuels: a review, Bioresour. Technol., 184, 314, 10.1016/j.biortech.2014.11.050
Mullen, 2010, Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis, Biomass Bioenergy, 34, 67, 10.1016/j.biombioe.2009.09.012
Choudhury, 2014, Pyrolysis of jute dust: effect of reaction parameters and analysis of products, J. Mater. Cycles Waste Manag., 16, 449, 10.1007/s10163-014-0268-4
Bird, 2011, Algal biochar – production and properties, Bioresour. Technol., 102, 1886, 10.1016/j.biortech.2010.07.106
Ronsse, 2013, Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions, Glob. Change Biol. Bioenergy, 5, 104, 10.1111/gcbb.12018
Pütün, 2005, Fixed-bed pyrolysis of cotton stalks for liquid and solid products, Fuel Process. Technol., 86, 1207, 10.1016/j.fuproc.2004.12.006
Spokas, 2009, Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil, Chemosphere, 77, 574, 10.1016/j.chemosphere.2009.06.053
Koul, 2014, Thermo-chemical conversion of Kusum seed: a possible route to produce alternate fuel and chemicals, J. Anal. Appl. Pyrolysis, 110, 291, 10.1016/j.jaap.2014.09.013
Kwapinski, 2010, Bio-char from biomass and waste, Waste Biomass Valorization, 1, 177, 10.1007/s12649-010-9024-8