Characterization of approximate Partial Hamiltonian operators and related approximate first integrals
Tài liệu tham khảo
Baikov, 1988, Approximate symmetries, Mat. Sb., 136 (178), 435
Baikov, 1991, Perturbation methods in group analysis, J. Soviet. Math., 55, 1450, 10.1007/BF01097534
Baikov, 1994, Closed orbits and their stable symmetries, J. Math. Phys., 35, 6525, 10.1063/1.530689
Govinder, 1998, Approximate Noether symmetries, Phys. Lett. A, 240, 127, 10.1016/S0375-9601(98)00067-X
Feroze, 2002, Group theoretic methods for approximate invariants and Lagrangians for some classes of y′′+εF(t)y′+y=f(y,y′), Int. J. Nonlinear Mech., 37, 275, 10.1016/S0020-7462(00)00111-6
Nayfeh, 1989, Modal interactions in dynamical and structural systems, Appl. Mech. Rev., 42, S175, 10.1115/1.3152389
Naeem, 2009, Approximate partial Noether operators and first integrals for coupled nonlinear oscillators, Nonlinear Dynam., 57, 303, 10.1007/s11071-008-9441-4
Naeem, 2010, Approximate first integrals for a system of two coupled van der Pol oscillators with linear diffusive coupling, Math. Comput. Appl., 15, 720
Kara, 2007, Partial Noether operators and first integrals via partial Lagrangians, Math. Methods Appl. Sci., 30, 2079, 10.1002/mma.939
Naz, 2016, A partial Lagrangian method for dynamical systems, Nonlinear Dynamics, 84, 1783, 10.1007/s11071-016-2605-8
Naz, 2011, Approximate partial Noether operators and first integrals for cubically coupled nonlinear Duffing oscillators subject to a periodically driven force, J. Math. Anal. Appl., 380, 289, 10.1016/j.jmaa.2011.02.028
Kara, 1999, Approximate symmetries and conservation laws with applications, Internat. J. Theoret. Phys., 38, 2389, 10.1023/A:1026684004127
Gan, 2010, Approximate conservation laws of perturbed partial differential equations, Nonlinear Dynam., 61, 217, 10.1007/s11071-009-9643-4
Johnpillai, 2001, Variational formulation of approximate symmetries and conservation laws, Int. J. Theor. Phys., 40, 1501, 10.1023/A:1017561629174
Johnpillai, 2009, Approximate Noether-type symmetries and conservation laws via partial Lagrangians for PDEs with a small parameter, J. Comput. Appl. Math., 223, 508, 10.1016/j.cam.2008.01.020
Naz, 2008, Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics, Appl. Math. Comput., 205, 212, 10.1016/j.amc.2008.06.042
Naz, 2014, Comparison of different approaches to construct first integrals for ordinary differential equations, vol. 2014
Naz, 2017, Generalization of approximate partial Noether approach in phase space, Nonlinear Dynam., 88, 735, 10.1007/s11071-016-3273-4
Levi-Civita, 1899, Interpretazione gruppale degli integrali di un sistema canonico, Rend. Accad. Lincei, Ser. III, 8, 235
Olver, 1993
Dorodnitsyn, 2010, Invariance and first integrals of continuous and discrete Hamiltonian equations, J. Engrg. Math., 66, 253, 10.1007/s10665-009-9312-0
Mahomed, 2015, Characterization of Hamiltonian symmetries and their first integrals, Int. J. Non-Linear Mech., 74, 84, 10.1016/j.ijnonlinmec.2015.04.005
Naz, 2018, Characterization of partial hamiltonian operators and related first integrals, Discrete Contin. Dyn. Syst. Ser. S, 11
Naz, 2014, A partial Hamiltonian approach for current value Hamiltonian systems, Commun. Nonlinear Sci. Numer. Simul., 19, 3600, 10.1016/j.cnsns.2014.03.023
Naz, 2016, Closed-form solutions for the Lucas–Uzawa model of economic growth via the partial Hamiltonian approach, Commun. Nonlinear Sci. Numer. Simul., 30, 299, 10.1016/j.cnsns.2015.06.033
Naz, 2016, The applications of the partial Hamiltonian approach to mechanics and other areas, Int. J. Nonlinear Mech., 86, 1, 10.1016/j.ijnonlinmec.2016.07.009
Kovacic, 2006, Conservation laws of two coupled non-linear oscillators, Int. J. Non-Linear Mech., 41, 751, 10.1016/j.ijnonlinmec.2006.04.007
Miles, 1985, Parametric excitation of an internally resonant double pendulum, Z. Angew. Math. Phys., 36, 337, 10.1007/BF00944628
Balachandran, 1990, Nonlinear oscillations of a harmonically excited composite structure, Compos. Struct., 16, 323, 10.1016/0263-8223(90)90040-L
Balachandran, 1990, Nonlinear motions of beam-mass structure, Nonlinear Dynam., 1, 39, 10.1007/BF01857584