Characterization of approximate Partial Hamiltonian operators and related approximate first integrals

International Journal of Non-Linear Mechanics - Tập 105 - Trang 158-164 - 2018
R. Naz1
1Centre for Mathematics and Statistical Sciences, Lahore School of Economics, Lahore 53200, Pakistan

Tài liệu tham khảo

Baikov, 1988, Approximate symmetries, Mat. Sb., 136 (178), 435 Baikov, 1991, Perturbation methods in group analysis, J. Soviet. Math., 55, 1450, 10.1007/BF01097534 Baikov, 1994, Closed orbits and their stable symmetries, J. Math. Phys., 35, 6525, 10.1063/1.530689 Govinder, 1998, Approximate Noether symmetries, Phys. Lett. A, 240, 127, 10.1016/S0375-9601(98)00067-X Feroze, 2002, Group theoretic methods for approximate invariants and Lagrangians for some classes of y′′+εF(t)y′+y=f(y,y′), Int. J. Nonlinear Mech., 37, 275, 10.1016/S0020-7462(00)00111-6 Nayfeh, 1989, Modal interactions in dynamical and structural systems, Appl. Mech. Rev., 42, S175, 10.1115/1.3152389 Naeem, 2009, Approximate partial Noether operators and first integrals for coupled nonlinear oscillators, Nonlinear Dynam., 57, 303, 10.1007/s11071-008-9441-4 Naeem, 2010, Approximate first integrals for a system of two coupled van der Pol oscillators with linear diffusive coupling, Math. Comput. Appl., 15, 720 Kara, 2007, Partial Noether operators and first integrals via partial Lagrangians, Math. Methods Appl. Sci., 30, 2079, 10.1002/mma.939 Naz, 2016, A partial Lagrangian method for dynamical systems, Nonlinear Dynamics, 84, 1783, 10.1007/s11071-016-2605-8 Naz, 2011, Approximate partial Noether operators and first integrals for cubically coupled nonlinear Duffing oscillators subject to a periodically driven force, J. Math. Anal. Appl., 380, 289, 10.1016/j.jmaa.2011.02.028 Kara, 1999, Approximate symmetries and conservation laws with applications, Internat. J. Theoret. Phys., 38, 2389, 10.1023/A:1026684004127 Gan, 2010, Approximate conservation laws of perturbed partial differential equations, Nonlinear Dynam., 61, 217, 10.1007/s11071-009-9643-4 Johnpillai, 2001, Variational formulation of approximate symmetries and conservation laws, Int. J. Theor. Phys., 40, 1501, 10.1023/A:1017561629174 Johnpillai, 2009, Approximate Noether-type symmetries and conservation laws via partial Lagrangians for PDEs with a small parameter, J. Comput. Appl. Math., 223, 508, 10.1016/j.cam.2008.01.020 Naz, 2008, Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics, Appl. Math. Comput., 205, 212, 10.1016/j.amc.2008.06.042 Naz, 2014, Comparison of different approaches to construct first integrals for ordinary differential equations, vol. 2014 Naz, 2017, Generalization of approximate partial Noether approach in phase space, Nonlinear Dynam., 88, 735, 10.1007/s11071-016-3273-4 Levi-Civita, 1899, Interpretazione gruppale degli integrali di un sistema canonico, Rend. Accad. Lincei, Ser. III, 8, 235 Olver, 1993 Dorodnitsyn, 2010, Invariance and first integrals of continuous and discrete Hamiltonian equations, J. Engrg. Math., 66, 253, 10.1007/s10665-009-9312-0 Mahomed, 2015, Characterization of Hamiltonian symmetries and their first integrals, Int. J. Non-Linear Mech., 74, 84, 10.1016/j.ijnonlinmec.2015.04.005 Naz, 2018, Characterization of partial hamiltonian operators and related first integrals, Discrete Contin. Dyn. Syst. Ser. S, 11 Naz, 2014, A partial Hamiltonian approach for current value Hamiltonian systems, Commun. Nonlinear Sci. Numer. Simul., 19, 3600, 10.1016/j.cnsns.2014.03.023 Naz, 2016, Closed-form solutions for the Lucas–Uzawa model of economic growth via the partial Hamiltonian approach, Commun. Nonlinear Sci. Numer. Simul., 30, 299, 10.1016/j.cnsns.2015.06.033 Naz, 2016, The applications of the partial Hamiltonian approach to mechanics and other areas, Int. J. Nonlinear Mech., 86, 1, 10.1016/j.ijnonlinmec.2016.07.009 Kovacic, 2006, Conservation laws of two coupled non-linear oscillators, Int. J. Non-Linear Mech., 41, 751, 10.1016/j.ijnonlinmec.2006.04.007 Miles, 1985, Parametric excitation of an internally resonant double pendulum, Z. Angew. Math. Phys., 36, 337, 10.1007/BF00944628 Balachandran, 1990, Nonlinear oscillations of a harmonically excited composite structure, Compos. Struct., 16, 323, 10.1016/0263-8223(90)90040-L Balachandran, 1990, Nonlinear motions of beam-mass structure, Nonlinear Dynam., 1, 39, 10.1007/BF01857584