Characterization of analog and digital control loops for bidirectional buck–boost converter using PID/PIDN algorithms
Tóm tắt
Từ khóa
Tài liệu tham khảo
Viswanatha V, Venkata Siva Reddy R (2018) Microcontroller based bidirectional buck–boost converter for photo-voltaic power plant. J Electric Syst Inf Technol 5(3):745–758
Viswanatha V, Reddy RVS (2017) Digital control of buck converter using arduino microcontroller for low power applications. In: 2017 international conference on smart technologies for smart nation (SmartTechCon), Bangalore, 2017, pp 439–443
Viswanatha V, Venkata Siva Reddy R. Modeling, simulation and analysis of non-inverting buck-boost converter using PSIM. In: 2016 international conference on circuits, controls, communications and computing (I4C), Bangalore, 2016, pp 1–5
Ravi D et al (2018) Bidirectional DC to DC converters: an overview of various topologies, switching schemes and control techniques. Int J Eng Technol. 7(4):360–365
Caricchi F, Crescimbini F, Capponi FG, Solero L (1998) Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives. APEC’98 Thirteen Annu Appl Power Electron Conf Expo 1:287–293
Lai J-S, Nelson DJ (2007) Energy management power converters in hybrid electric and fuel cell vehicles. Proc IEEE 95(4):766–777
Emadi A, Williamson SS, Khaligh A (2006) Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems. IEEE Trans Power Electron 21(3):567–577
Plesko H, Biela J, Luomi J, Kolar JW (2008) Novel concepts for integrating the electric drive and auxiliary DC–DC converter for hybrid vehicles. IEEE Trans Power Electron. 23(6):3025–3034
Gorji SA, Ektesabi M, Zheng J. Double-input boost/Y-source DC–DC converter for renewable energy sources. In: Proc. IEEE SPEC ‘16, 2016, Auckland, pp 1–6
Thummala P, Maksimovic D, Zhang Z, Andersen MAE (2016) Digital Control of a High-Voltage (2.5 kV) Bidirectional DC–DC Flyback Converter for Driving a Capacitive Incremental Actuator. IEEE Trans Power Electron 31(12):8500–8516
Amjadi Z, Williamson SS (2014) Digital control of a bidirectional DC/DC switched capacitor converter for hybrid electric vehicle energy storage system applications. IEEE Trans Smart Grid 5(1):158–166
Baek J, Choi W, Cho B (2013) Digital adaptive frequency modulation for bidirectional DC–DC converter. IEEE Trans Ind Electron 60(11):5167–5176
Guida B, Rubino L, Marino P, Cavallo A (2010) Implementation of control and protection logics for a bidirectional DC/DC converter. In: Proc IEEE Int Symp Ind Electron. 2010, Bari, pp 2696–2701
Cornea O, Andreescu G, Muntean N, Hulea D (2017) Bidirectional power flow control in a DC microgrid through a switched-capacitor cell hybrid DC–DC converter. IEEE Trans Ind Electron 64(4):3012–3022
Forouzesh M, Siwakoti YP, Gorji SA, Blaabjerg F, Lehman B (2017) Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans Power Electron 32(12):9143–9178
Jung J, Kim H, Ryu M, Baek J (2013) Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems. IEEE Trans Power Electron 28(4):1741–1755
Corradini L, Mattavelli P (2008) Modeling of multisampled pulse width modulators for digitally controlled DCDC converters. IEEE Trans Power Electron 23(4):1839–1847
Ilic M, Maksimovic D (2008) Digital average current-mode controller for DC–DC converters in physical vapor deposition applications. IEEE Trans Power Electron 23(3):1428–1436
Ramrez-Murillo H, Restrepo C, Konjedic T, Calvente J, Romero A, Baier CR, Giral R (2018) An efficiency comparison of fuel-cell hybrid systems based on the versatile buck–boost converter. IEEE Trans Power Electron 33(2):1237–1246
Ramrez-Murillo H, Restrepo C, Calvente J, Romero A, Giral R (2015) Energy management of a fuel-cell serial–parallel hybrid system. IEEE Trans Ind Electron 62(8):5227–5235
Ramírez-Murillo H et al (2014) Energy management dc system based on current-controlled buck-boost modules. IEEE Trans Smart Grid 5(5):2644–2653
Jones DC, Erickson RW (2013) A nonlinear state machine for dead zone avoidance and mitigation in a synchronous noninverting buck boost converter. IEEE Trans Power Electron 28(1):467–480
Restrepo C, Konjedic T, Member S, Calvente J, Giral R, Member S (2015) Hysteretic transition method for avoiding the dead-zone effect and subharmonics in a non-inverting buck-boost converter. IEEE Trans Power Electron 30(6):3418–3430
Zhang N, Zhang G, See KW (2018) Systematic derivation of deadzone elimination strategies for the noninverting synchronous buckboost converter. IEEE Trans Power Electron 33(4):3497–3508
Callegaro L, Ciobotaru M, Pagano DJ, Turano E, Fletcher JE (2018) A simple smooth transition technique for the noninverting buckboost converter. IEEE Trans Power Electron 33(6):4906–4915
Vidal-Idiarte E, Marcos-Pastor A, Giral R, Calvente J, Martinez-Salamero L (2017) Direct digital design of a sliding mode-based control of a PWM synchronous buck converter. IET Power Electron 10(13):1714–1720
Chen J, Prodic A, Erickson RW, Maksimovic D (2003) Predictive digital current programmed control. IEEE Trans Power Electron 18(1):411–419