Characterization of a Laser Extensometer for Split Hopkinson Pressure bar Experiments
Tóm tắt
This paper examines a laser extensometer to calculate the strain in a sample during split Hopkinson pressure bar (SHPB) experiments. This method offers a non-contact, direct method for measuring sample strain which does not rely on one-dimensional wave propagation assumptions. First a single bar experiment is used to compare the extensometer’s accuracy and frequency response against a laser vibrometer and an accelerometer. The extensometer showed a close match with the vibrometer up to a bandwidth of 10 kHz. With the performance validated, the extensometer is applied to a SHPB experiment with silicone samples. For low strains, the extensometer shows a good match to the strain determined by strain gauges on the bars. At higher strains, the radial expansion of the sample can interfere with the measurement beam from the extensometer and produce inaccurate results.
Tài liệu tham khảo
Kolsky H (1949) An investigation of hte mechanical properties of materials at very high rates of loading. Proc Phys Soc B 62:676–700. doi:10.1008/0370-1301/62/11/302
Chen W, Song B (2011) Split Hopkinson (Kolsky) Bar. Springer, New York, NY
Lindholm US (1964) Some experiments with the split Hopkinson pressure bar. J Mech Phys Solids 12:317–335. doi:10.1016/022-5096(54)90028-6
Gilat A, Schmidt TE, Walker AL (2009) Full field strain measurement in compression and tensile split Hopkinson bar experiments. Exp Mech 49:291–302. doi:10.1007/s11340-008-9157-x
Chen, J. J., Guo, B. Q., Liu, H. B., Liu, H., and Chen, P. W. (2014) Dynamic brazilian test of brittle materials using the split Hopkinson pressure bar and digital image correlation. Strain 50: pp. 563-570. doi:10.11111/str.12118
Liu J, Saletti D, Pattofatto S, Zhao H (2015) Impact testing of polymeric foam using Hopkinson bars and digital image analysis. Polym Test 36:101–109. doi:10.1016/j.polymertesting.2014.03.014
Mates S, Rhorer R, Everett RK, Simmonds KE, Bagchi A (2009) High strain rate tissue simulant measurements using digitial image correlation. In: Proceedings of the SEM Annual Conference, Albuquerque, NM, USA, 1-4 June 2009
Lo YL, Sirkis JS, Fourney WL (1997) In-fiber doppler velocimeter for velocity measurements of moving surfaces. Exp Mech 37(3):328–332. doi:10.1007/BF02317426
Weng J, Tan H, Hu S, Ma Y, Wang X (2005) New all-fiber velocimeter. Rev Sci Instrum 76:093301. doi:10.1063/1.2008989
Avinadav C, Ashuach Y, Kreif R (2011) Interferometry-based Kolsky bar apparatus. Rev Sci Instrum 82:073908. doi:10.1063/1.3615243
Fu H, Tang XR, Li JL, Tan DW (2014) An experimental technique of split Hopkinson pressure bar using fiber micro-displacement interferometer system for any reflector. Rev Sci Instrum 85:045120. doi:10.1063/1.4871955
Li Y, Ramesh KT (2007) An optical technique for measurement of material properties in the tension Kolsky bar. Inter J Impact Eng 34:784–798. doi:10.1016/j.ijimpeng.2005.12.002
Ramesh KT, Narasimhan S (1996) Finite deformations and the dynamic measurement of radial strains in compression Kolsky bar experiments. Int J Solids Struct 33(25):3723–3738. doi:10.1016/0020-7683(95)00206-5
Micro-epsilon (2016) optoCONTROL 1200/1201 instruction manual. www.micro-epsilon.com/2D_3D/optical-micrometer/micrometer/optoCONTROL_1200
Ostwaldt D, Klepaczko J, Klimanek P (1997) Compression tests of polycrystalline α-iron up to high strains over a large range of strain rates. J Phys IV 07(C3):C3-385–C383-390. doi:10.1051/jp4:1997367
Guzman O, Frew DJ, Chen W (2011) A Kolsky tension bar technique using a hollow incident tube. Meas Sci Technol 22(4):045703. doi:10.1088/0957-0233/22/4/045703
Cheng M, Chen W, Weerasooriya T (2009) Mechanical behavior of bovine tendon with stress-softening and loading-rate effects. Adv Theor Appl Mech 2(2):59–74
Lim J, Chen WW, Zheng JQ (2010) Dynamic small strain measurements of Kevlar(R) 129 single fibers with a miniaturized tension Kolsky bar. Polym Test 29:701–705. doi:10.1016/j.polymertesting.2010.05.012
Nie X, Song B, Loeffler CM (2015) A novel splitting-beam laser extensometer technique for Kolsky tension bar experiment. J Dynamic Behav Mater 1(1):70–74. doi:10.1007/s40870-015-0005-7
Song B, Antoun BR, Jin H (2013) Dynamic tensile characterization of a 4330-V steel with Kolsky bar techniques. Exp Mech 53:1519–1529. doi:10.1007/s11340-013-9721-x
Sanborn B, Song B, Smith S (2016) Pre-strain effect on frequency-based impact energy dissipation through a silicone foam pad for shock mitigation. J Dynamic Behav Mater 2:138–145. doi:10.1007/s40870-015-0043-1
Dean AW (2016) Feasibility of a new technique to determine dynamic tensile behavior of brittle material. University of North Texas, Master of Science
Chen W, Zhang B, Forrestal MJ (1999) A split Hopkinson bar technique for low-impedance materials. Exp Mech 39:81–85. doi:10.1007/BF02331109
National Instruments (2006) NI 6132/6133 Specifications www.ni.com/pdf/manuals/371231d.pdf
Chen W, Lu F, Cheng M (2002) Tension and compression tests of two polymers under quasi-static and dynamic loading. Polym Test 21:113–121. doi:10.1016/S0142-9418(01)00055-1
Peroni M, Solomos G, Babcsan N (2016) Development of a Hopkinson bar apparatus for testing soft materials: application to a closed-cell aluminum foam. Materials 9(27):1–13. doi:10.3390/ma9010027
Johnson TPM, Sarva SS, Socrate S (2010) Comparison of low impedance split-Hopkinson pressure bar techniques in the characterization of polyurea. Exp Mech 50:931–940. doi:10.1007/s11340-009-9305-y
Ewins DJ (2000) Modal testing: theory, practice, and application. Research Studies Press Ltd., Hertfordshire, England
Coa B, Daphalapurkar NP, Ramesh KT (2015) Ultra-high-strain-rate shearing and deformation twinning in nanocrystalline aluminum. Meccania 50(2):561–574. doi:10.1007/s11012-014-9952-7
Specialty Silicone Products, I. (2014) SSP-2390 Series Silicone Elastomers www.sspinc.com/products/SSP-2390-SERIES_55_product.htm
Graff KF (1975) Wave motion in elastic Solids. Oxford University Press, London
Jerabek M, Major Z, Lang RW (2010) Uniaxial compression testing of polymeric materials. Polym Test 29(3):302–309. doi:10.1016/j.polymertesting.2009.12.003
Song, B., Nelson, K., Lipinski, R., Bignell, J., Ulrich, G. B., and George, E. P. (2014) Dynamic high-temperature characterization of iridium alloy in compression at high strain rates. Sandia National Laboratories technical report SAND2014-15442, Albuquerque, NM