Đặc trưng của Akermanite và Merwinite được chiết tách từ quá trình đốt cháy Sol-Gel phục vụ cho hoạt động chống vi khuẩn và sự phân biệt xương của tế bào gốc trung mô

Silicon - Tập 15 - Trang 4397-4408 - 2023
Senthil Kumar Venkatraman1, Genasan Krishnamurithy2,3, Rajan Choudhary4,5, Fedor Senatov6, Hanumantha Rao Balaji Raghavendran2,7, Malliga Raman Murali2, Tunku Kamarul8, Anushree Suresh8, Jayanthi Abraham8, Sumant Samuel9, Abel Livingston9, Sasikumar Swamiappan10
1Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
2Tissue Engineering Group (TEG), Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
3Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
4Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
5Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
6Center for Biomedical Engineering, National University of Science and Technology “MISiS”, Moscow, Russia
7Central Research Facility, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
8Microbial Biotechnology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
9Department of Orthopaedics, Christian Medical College, Vellore, India
10Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India

Tóm tắt

Trong lĩnh vực kỹ thuật mô, việc xây dựng các implant phẫu thuật có chức năng sinh lý và kháng khuẩn mạnh mẽ là vô cùng khó khăn. Nghiên cứu hiện tại điều tra ảnh hưởng của các loại bioceramic silicate bậc ba (akermanite và merwinite) trong các ứng dụng sinh học. Quy trình đốt cháy sol-gel phối hợp với axit citric đã giúp tăng tốc và hạ nhiệt độ quá trình tổng hợp bioceramic. Nghiên cứu nhiễu xạ tia X xác nhận độ tinh khiết của pha akermanite và merwinite, trong khi đó kính hiển vi điện tử quét cho thấy hình thái bề mặt agglomerated. Cả hai loại bioceramic đều có tác dụng diệt khuẩn ở nồng độ rất thấp. Akermanite và merwinite cho thấy hoạt động kháng khuẩn đặc thù cho từng loài. Biểu hiện protein BMP2 của tế bào cấy trên merwinite vào ngày 14 là rõ rệt nhưng đối với tế bào cấy trên akermanite, không phát hiện được biểu hiện. Kết quả từ SEM, hình ảnh huỳnh quang và thử nghiệm sống sót/ tăng trưởng Alamar blue của akermanite và merwinite cho thấy sự bám dính tốt của hBMSCs và sự tăng trưởng đáng kể. Điều này chứng tỏ tính tương thích sinh học của akermanite và merwinite.

Từ khóa

#kỹ thuật mô #bioceramic #akermanite #merwinite #kháng khuẩn #tế bào gốc trung mô

Tài liệu tham khảo

Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M (2015) Biodegradable materials for bone repair and tissue engineering applications. Materialshttps://doi.org/10.3390/ma8095273 Weatherholt AM, Fuchs RK, Warden SJ (2012) Specialized connective tissue: bone, the structural framework of the upper extremity. J. Hand. Therhttps://doi.org/10.1016/j.jht.2011.08.003 Oden A, McCloskey EV, Kanis JA, Harvey NC, Johansson H (2015) Burden of high fracture probability worldwide: secular increases 2010-2040. Osteoporosis Inthttps://doi.org/10.1007/s00198-015-3154-6 Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Enghttps://doi.org/10.1615/CritRevBiomedEng.v40.i5.10 Guise TA (2006) Bone loss and fracture risk associated with cancer therapy. Oncologisthttps://doi.org/10.1634/theoncologist.11-10-1121 Wang X, Zhang L, Ke X, Wang J, Yang G, Yang X, Xu S (2015) 45S5 Bioglass analogue reinforced akermanite ceramic favorable for additive manufacturing mechanically strong scaffolds. RSC Advhttps://doi.org/10.1039/C5RA19272B Chen FM, Liu X(2016) Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Scihttps://doi.org/10.1016/j.progpolymsci.2015.02.004 Vadgama P (2005) Surfaces and Interfaces for Biomaterials. CRC Press, Florida Venkatraman SK, Swamiappan S (2019) Synthesis, Bioactivity and Mechanical Stability of Mg/Ca Silicate Biocomposites Developed for Tissue Engineering Applications. ChemistrySelect. https://doi.org/10.1002/slct.201902780. Diba M, Goudouri OM, Tapia F, Boccaccini AR (2014) Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications. Curr. Opin. Solid. St. M. https://doi.org/10.1111/j.2041-1294.2012.00095.x. Fiocco L, Li S, Stevens MM, E. Bernardo, J.R. Jones, Biocompatibility and bioactivity of porous polymer-derived Ca-Mg silicate ceramics, Acta Biomater. 50 (2017) 56–67. https://doi.org/10.1016/j.actbio.2016.12.043. Choudhary R, Venkatraman SK, Bulygina I, Senatov F, Kaloshkin S, Anisimova N, Kiselevskiy M, Knyazeva M,Kukui D, Walther F, Swamiappan S (2021) Biomineralization, dissolution and cellular studies of silicate bioceramics prepared from eggshell and rice husk. Mater. Sci. Eng. Chttps://doi.org/10.1016/j.msec.2020.111456 Venkatraman SK, Choudhary R, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T,Suresh A, Abraham J, Swamiappan S (2021) Biomineralization, mechanical, antibacterial and biological investigation of larnite and rankinite bioceramics. Mater. Sci. Eng. Chttps://doi.org/10.1016/j.msec.2020.111466 Hafezi M, Nadernezhad A, Mohammadi M, Barzegar H, Mohammadi H (2014) Effect of ball milling time on the synthesis of nanocrystalline merwinite via mechanical activation and heat treatment. Int. J. Mater. Res. https://doi.org/10.3139/146.111048 Xu L, Yu G, Zhang E, Pan F, Yang K (2007) In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J. Biomed. Mater. Res. Ahttps://doi.org/10.1002/jbm.a.31273 Hoppe A, Mouriño V, Boccaccini AR (2013) Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomater. Sci. https://doi.org/10.1039/C2BM00116K. Castiglioni S, Cazzaniga A, Albisetti W, Maier J (2013) Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrientshttps://doi.org/10.3390/nu5083022 Krishnamurithy G, Mohan S, Yahya NA, Mansor A, Murali MR, Raghavendran HRB, Kamarul T (2019) The physicochemical and biomechanical profile of forsterite and its osteogenic potential of mesenchymal stromal cells, PLoS Onehttps://doi.org/10.1371/journal.pone.0214212 Hench LL (1991) Bioceramics: from concept to clinic. J. Am. Ceram. Sochttps://doi.org/10.1111/j.1151-2916.1991.tb07132.x Wu C, Chang J, Ni S, Wang J (2006) In vitro bioactivity of akermanite ceramics. J. Biomed. Mater. Res. Ahttps://doi.org/10.1002/jbm.a.30496 Emadi R, Esfahani SR, Tavangarian F (2010) A novel, low temperature method for the preparation of ß-TCP/HAP biphasic nanostructured ceramic scaffold from natural cancellous bone. Mater. Letthttps://doi.org/10.1016/j.matlet.2010.01.085 Huang M,Zhang M, Yao D, Chen X, Pu X, Liao X, Huang H, Yin G (2017) Dissolution behavior of CaO-MgO-SiO2-based bioceramic powders in simulated physiological environments. Ceram. Inthttps://doi.org/10.1016/j.ceramint.2017.03.130 Zhang M, Chen X,Pu X, Liao X, Huang Z, Yin G (2014) Different effects of a novel CaO–MgO–SiO2-based multiphase glass–ceramic on cell behaviors of normal and cancer cells in vitro. Colloids Surf. B Biointerfaceshttps://doi.org/10.1002/jbm.a.36154 Liu Q, Cen L, Yin S, Chen L, Liu G, Chang J, Cui L (2008) A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and β-TCP ceramics. Biomaterialshttps://doi.org/10.1016/j.biomaterials.2008.08.039 Tavangarian F, Zolko CA, Fahami A, Forghani A, Hayes D (2019) Facile synthesis and structural insight of nanostructure akermanite powder. Ceram. Inthttps://doi.org/10.1016/j.ceramint.2019.01.097 Mihailova I, Radev L, Aleksandrova V, Colova I, Salvado I, Fernandes M (2015) Novel merwinite/akermanite ceramics: in vitro bioactivity. Bulg Chem Commun 47:253–260 Yi D, Wu C, Ma X, Ji H, Zheng X, Chang J (2012) Preparation and in-vitro evaluation of plasma-sprayed bioactive akermanite coatings. Biomed. Materhttps://doi.org/10.1088/1748-6041/7/6/065004 Hu S, Ning C, Zhou Y,Chen L, Lin K, Chang J (2011) Antibacterial activity of silicate bioceramics. J. Wuhan Univ. Technol. Mater. Sci. Edhttps://doi.org/10.1007/s11595-011-0202-8 Gu H, Guo F, Zhou X, Gong L, Zhang Y, Zhai W, Cui L (2011) The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway. Biomaterialshttps://doi.org/10.1016/j.biomaterials.2011.06.003 Hafezi M, Talebi AR, Miresmaeili SM, Sadeghian F, Fesahat F (2013) Histological analysis of bone repair in rat femur via nanostructured merwinite granules. Ceram. Inthttps://doi.org/10.1016/j.ceramint.2012.11.054 Chen X, Ou J, Wei Y, Huang Z, Kang Y, Yin G (2010) Effect of MgO contents on the mechanical properties and biological performances of bioceramics in the MgO–CaO–SiO2 system. J. Mater. Sci. Mater. Medhttps://doi.org/10.1007/s10856-010-4025-5 Paital SR, Dahotre NB (2009) Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Mater. Sci. Eng. R. https://doi.org/10.1016/j.mser.2009.05.001. Arias CA,Betancur MCT, Pinzón MA, Arango DC, Taffur CAC, Prada EC (2015) Differences in the clinical outcome of osteomyelitis by treating specialty: orthopedics or infectology. PLoS Onehttps://doi.org/10.1371/journal.pone.0144736 Choudhary R, Chatterjee A, Venkatraman SK, Koppala S, Abraham J, Swamiappan S (2018) Antibacterial forsterite (Mg2SiO4) scaffold: A promising bioceramic for load bearing applications. Bioact. Mater. https://doi.org/10.1016/j.bioactmat.2018.03.003. Krishnamurithy G, Murali MR, Hamdi M, Abbas AA, Raghavendran HB, Kamarul T (2015)Proliferation and osteogenic differentiation of mesenchymal stromal cells in a novel porous hydroxyapatite scaffold. Regen. Medhttps://doi.org/10.2217/rme.15.27 Alias R, Mahmoodian R, Genasan K, Vellasamy KM, Shukor MHA, Kamarul T (2020) Mechanical, antibacterial, and biocompatibility mechanism of PVD grown silver–tantalum-oxide-based nanostructured thin film on stainless steel 316L for surgical applications. Mater. Sci. Eng. Chttps://doi.org/10.1016/j.msec.2019.110304 Choudhary R, Koppala S, Swamiappan S (2015) Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis. J. Asian Ceram. Sochttps://doi.org/10.1016/j.jascer.2015.01.002 Wu C, Chang J (2007) Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. J Biomed Mater Res B 83:153–160 Collin MS, Venkatraman SK, Sriramulu M, Shanmugam S, Drweesh EA, Elnagar MM, Mosa ES, Sasikumar S (2021) Solution combustion synthesis of functional diopside, akermanite, and merwinitebioceramics: Excellent biomineralization, mechanical strength, and antibacterial ability. Mater. Today. Commun. https://doi.org/10.1016/j.mtcomm.2021.102365. Hafezi-Ardakani M, Moztarzadeh F, Rabiee M, Talebi AR (2011) Synthesis and characterization of nanocrystallinemerwinite (Ca3Mg(SiO4)2) via sol–gel method. Ceram. Inthttps://doi.org/10.1016/j.ceramint.2010.08.034 Saini M, Singh Y, Arora P, Arora V, Jain K (2015) Implant biomaterials: A comprehensive review, World J. Clin. Cases. https://doi.org/10.12998/wjcc.v3.i1.52. Tang ZX, Lv BF (2014)MgO nanoparticles as antibacterial agent: preparation and activity. Braz. J. Chem. Eng. https://doi.org/10.1590/0104-6632.20140313s00002813. Kwun IS, Cho YE, R.A.R. Lomeda, H.I. Shin, J.Y. Choi, Y.H. Kang, J.H. Beattie, Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone. https://doi.org/10.1016/j.bone.2009.11.003. Jung BO, Kim CH, Choi KS, Lee YM, Kim JJ (1999) Preparation of amphiphilic chitosan and their antimicrobial activities. J. Appl. Polym. Scihttps://doi.org/10.1002/(SICI)1097-4628(19990624)72:13<1713::AID-APP7>3.0.CO;2-T González-Henríquez C, Sarabia-Vallejos M, Rodriguez-Hernandez J (2017) Advances in the fabrication of antimicrobial hydrogels for biomedical applications. Materialshttps://doi.org/10.3390/ma10030232 Song W, Ge S (2019) Application of antimicrobial nanoparticles in dentistry. Molecules 24:1033 Zhao C, Liu W, Zhu M, Wu C, Zhu Y (2022) Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review. Bioact. Mater. https://doi.org/10.1016/j.bioactmat.2022.02.010. Pang S,Wu D, Kamutzki F, Kurreck J, Gurlo A, Hanaor DAH (2022) High performing additively manufactured bone scaffolds based on copper substituted diopside. Mater. Deshttps://doi.org/10.1016/j.matdes.2022.110480 Shaw N, Högler W (2012)in:Glorieux FH, Pettifor JM, Jüppner H (Eds.) Pediatric Bone, 2nd ed., Academic Press, San Diego. Charbord P (2010) Bone marrow mesenchymal stem cells: historical overview and concepts. Hum. Gene Therhttps://doi.org/10.1089/hum.2010.115 Kihara T,Hirose M, Oshima A, Ohgushi H (2006) Exogenous type I collagen facilitates osteogenic differentiation and acts as a substrate for mineralization of rat marrow mesenchymal stem cells in-vitro. Biochem. Biophys. Res. Communhttps://doi.org/10.1016/j.bbrc.2006.01.059 Jung T, Lee JH, Park S, Kim YJ, Seo J, Shim HE, Moon SH (2017) Effect of BMP-2 delivery mode on osteogenic differentiation of stem cells. Stem cells Inthttps://doi.org/10.1155/2017/7859184