Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đặc trưng của Akermanite và Merwinite được chiết tách từ quá trình đốt cháy Sol-Gel phục vụ cho hoạt động chống vi khuẩn và sự phân biệt xương của tế bào gốc trung mô
Tóm tắt
Trong lĩnh vực kỹ thuật mô, việc xây dựng các implant phẫu thuật có chức năng sinh lý và kháng khuẩn mạnh mẽ là vô cùng khó khăn. Nghiên cứu hiện tại điều tra ảnh hưởng của các loại bioceramic silicate bậc ba (akermanite và merwinite) trong các ứng dụng sinh học. Quy trình đốt cháy sol-gel phối hợp với axit citric đã giúp tăng tốc và hạ nhiệt độ quá trình tổng hợp bioceramic. Nghiên cứu nhiễu xạ tia X xác nhận độ tinh khiết của pha akermanite và merwinite, trong khi đó kính hiển vi điện tử quét cho thấy hình thái bề mặt agglomerated. Cả hai loại bioceramic đều có tác dụng diệt khuẩn ở nồng độ rất thấp. Akermanite và merwinite cho thấy hoạt động kháng khuẩn đặc thù cho từng loài. Biểu hiện protein BMP2 của tế bào cấy trên merwinite vào ngày 14 là rõ rệt nhưng đối với tế bào cấy trên akermanite, không phát hiện được biểu hiện. Kết quả từ SEM, hình ảnh huỳnh quang và thử nghiệm sống sót/ tăng trưởng Alamar blue của akermanite và merwinite cho thấy sự bám dính tốt của hBMSCs và sự tăng trưởng đáng kể. Điều này chứng tỏ tính tương thích sinh học của akermanite và merwinite.
Từ khóa
#kỹ thuật mô #bioceramic #akermanite #merwinite #kháng khuẩn #tế bào gốc trung môTài liệu tham khảo
Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M (2015) Biodegradable materials for bone repair and tissue engineering applications. Materialshttps://doi.org/10.3390/ma8095273
Weatherholt AM, Fuchs RK, Warden SJ (2012) Specialized connective tissue: bone, the structural framework of the upper extremity. J. Hand. Therhttps://doi.org/10.1016/j.jht.2011.08.003
Oden A, McCloskey EV, Kanis JA, Harvey NC, Johansson H (2015) Burden of high fracture probability worldwide: secular increases 2010-2040. Osteoporosis Inthttps://doi.org/10.1007/s00198-015-3154-6
Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Enghttps://doi.org/10.1615/CritRevBiomedEng.v40.i5.10
Guise TA (2006) Bone loss and fracture risk associated with cancer therapy. Oncologisthttps://doi.org/10.1634/theoncologist.11-10-1121
Wang X, Zhang L, Ke X, Wang J, Yang G, Yang X, Xu S (2015) 45S5 Bioglass analogue reinforced akermanite ceramic favorable for additive manufacturing mechanically strong scaffolds. RSC Advhttps://doi.org/10.1039/C5RA19272B
Chen FM, Liu X(2016) Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Scihttps://doi.org/10.1016/j.progpolymsci.2015.02.004
Vadgama P (2005) Surfaces and Interfaces for Biomaterials. CRC Press, Florida
Venkatraman SK, Swamiappan S (2019) Synthesis, Bioactivity and Mechanical Stability of Mg/Ca Silicate Biocomposites Developed for Tissue Engineering Applications. ChemistrySelect. https://doi.org/10.1002/slct.201902780.
Diba M, Goudouri OM, Tapia F, Boccaccini AR (2014) Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications. Curr. Opin. Solid. St. M. https://doi.org/10.1111/j.2041-1294.2012.00095.x.
Fiocco L, Li S, Stevens MM, E. Bernardo, J.R. Jones, Biocompatibility and bioactivity of porous polymer-derived Ca-Mg silicate ceramics, Acta Biomater. 50 (2017) 56–67. https://doi.org/10.1016/j.actbio.2016.12.043.
Choudhary R, Venkatraman SK, Bulygina I, Senatov F, Kaloshkin S, Anisimova N, Kiselevskiy M, Knyazeva M,Kukui D, Walther F, Swamiappan S (2021) Biomineralization, dissolution and cellular studies of silicate bioceramics prepared from eggshell and rice husk. Mater. Sci. Eng. Chttps://doi.org/10.1016/j.msec.2020.111456
Venkatraman SK, Choudhary R, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T,Suresh A, Abraham J, Swamiappan S (2021) Biomineralization, mechanical, antibacterial and biological investigation of larnite and rankinite bioceramics. Mater. Sci. Eng. Chttps://doi.org/10.1016/j.msec.2020.111466
Hafezi M, Nadernezhad A, Mohammadi M, Barzegar H, Mohammadi H (2014) Effect of ball milling time on the synthesis of nanocrystalline merwinite via mechanical activation and heat treatment. Int. J. Mater. Res. https://doi.org/10.3139/146.111048
Xu L, Yu G, Zhang E, Pan F, Yang K (2007) In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J. Biomed. Mater. Res. Ahttps://doi.org/10.1002/jbm.a.31273
Hoppe A, Mouriño V, Boccaccini AR (2013) Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. Biomater. Sci. https://doi.org/10.1039/C2BM00116K.
Castiglioni S, Cazzaniga A, Albisetti W, Maier J (2013) Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrientshttps://doi.org/10.3390/nu5083022
Krishnamurithy G, Mohan S, Yahya NA, Mansor A, Murali MR, Raghavendran HRB, Kamarul T (2019) The physicochemical and biomechanical profile of forsterite and its osteogenic potential of mesenchymal stromal cells, PLoS Onehttps://doi.org/10.1371/journal.pone.0214212
Hench LL (1991) Bioceramics: from concept to clinic. J. Am. Ceram. Sochttps://doi.org/10.1111/j.1151-2916.1991.tb07132.x
Wu C, Chang J, Ni S, Wang J (2006) In vitro bioactivity of akermanite ceramics. J. Biomed. Mater. Res. Ahttps://doi.org/10.1002/jbm.a.30496
Emadi R, Esfahani SR, Tavangarian F (2010) A novel, low temperature method for the preparation of ß-TCP/HAP biphasic nanostructured ceramic scaffold from natural cancellous bone. Mater. Letthttps://doi.org/10.1016/j.matlet.2010.01.085
Huang M,Zhang M, Yao D, Chen X, Pu X, Liao X, Huang H, Yin G (2017) Dissolution behavior of CaO-MgO-SiO2-based bioceramic powders in simulated physiological environments. Ceram. Inthttps://doi.org/10.1016/j.ceramint.2017.03.130
Zhang M, Chen X,Pu X, Liao X, Huang Z, Yin G (2014) Different effects of a novel CaO–MgO–SiO2-based multiphase glass–ceramic on cell behaviors of normal and cancer cells in vitro. Colloids Surf. B Biointerfaceshttps://doi.org/10.1002/jbm.a.36154
Liu Q, Cen L, Yin S, Chen L, Liu G, Chang J, Cui L (2008) A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and β-TCP ceramics. Biomaterialshttps://doi.org/10.1016/j.biomaterials.2008.08.039
Tavangarian F, Zolko CA, Fahami A, Forghani A, Hayes D (2019) Facile synthesis and structural insight of nanostructure akermanite powder. Ceram. Inthttps://doi.org/10.1016/j.ceramint.2019.01.097
Mihailova I, Radev L, Aleksandrova V, Colova I, Salvado I, Fernandes M (2015) Novel merwinite/akermanite ceramics: in vitro bioactivity. Bulg Chem Commun 47:253–260
Yi D, Wu C, Ma X, Ji H, Zheng X, Chang J (2012) Preparation and in-vitro evaluation of plasma-sprayed bioactive akermanite coatings. Biomed. Materhttps://doi.org/10.1088/1748-6041/7/6/065004
Hu S, Ning C, Zhou Y,Chen L, Lin K, Chang J (2011) Antibacterial activity of silicate bioceramics. J. Wuhan Univ. Technol. Mater. Sci. Edhttps://doi.org/10.1007/s11595-011-0202-8
Gu H, Guo F, Zhou X, Gong L, Zhang Y, Zhai W, Cui L (2011) The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway. Biomaterialshttps://doi.org/10.1016/j.biomaterials.2011.06.003
Hafezi M, Talebi AR, Miresmaeili SM, Sadeghian F, Fesahat F (2013) Histological analysis of bone repair in rat femur via nanostructured merwinite granules. Ceram. Inthttps://doi.org/10.1016/j.ceramint.2012.11.054
Chen X, Ou J, Wei Y, Huang Z, Kang Y, Yin G (2010) Effect of MgO contents on the mechanical properties and biological performances of bioceramics in the MgO–CaO–SiO2 system. J. Mater. Sci. Mater. Medhttps://doi.org/10.1007/s10856-010-4025-5
Paital SR, Dahotre NB (2009) Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Mater. Sci. Eng. R. https://doi.org/10.1016/j.mser.2009.05.001.
Arias CA,Betancur MCT, Pinzón MA, Arango DC, Taffur CAC, Prada EC (2015) Differences in the clinical outcome of osteomyelitis by treating specialty: orthopedics or infectology. PLoS Onehttps://doi.org/10.1371/journal.pone.0144736
Choudhary R, Chatterjee A, Venkatraman SK, Koppala S, Abraham J, Swamiappan S (2018) Antibacterial forsterite (Mg2SiO4) scaffold: A promising bioceramic for load bearing applications. Bioact. Mater. https://doi.org/10.1016/j.bioactmat.2018.03.003.
Krishnamurithy G, Murali MR, Hamdi M, Abbas AA, Raghavendran HB, Kamarul T (2015)Proliferation and osteogenic differentiation of mesenchymal stromal cells in a novel porous hydroxyapatite scaffold. Regen. Medhttps://doi.org/10.2217/rme.15.27
Alias R, Mahmoodian R, Genasan K, Vellasamy KM, Shukor MHA, Kamarul T (2020) Mechanical, antibacterial, and biocompatibility mechanism of PVD grown silver–tantalum-oxide-based nanostructured thin film on stainless steel 316L for surgical applications. Mater. Sci. Eng. Chttps://doi.org/10.1016/j.msec.2019.110304
Choudhary R, Koppala S, Swamiappan S (2015) Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis. J. Asian Ceram. Sochttps://doi.org/10.1016/j.jascer.2015.01.002
Wu C, Chang J (2007) Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. J Biomed Mater Res B 83:153–160
Collin MS, Venkatraman SK, Sriramulu M, Shanmugam S, Drweesh EA, Elnagar MM, Mosa ES, Sasikumar S (2021) Solution combustion synthesis of functional diopside, akermanite, and merwinitebioceramics: Excellent biomineralization, mechanical strength, and antibacterial ability. Mater. Today. Commun. https://doi.org/10.1016/j.mtcomm.2021.102365.
Hafezi-Ardakani M, Moztarzadeh F, Rabiee M, Talebi AR (2011) Synthesis and characterization of nanocrystallinemerwinite (Ca3Mg(SiO4)2) via sol–gel method. Ceram. Inthttps://doi.org/10.1016/j.ceramint.2010.08.034
Saini M, Singh Y, Arora P, Arora V, Jain K (2015) Implant biomaterials: A comprehensive review, World J. Clin. Cases. https://doi.org/10.12998/wjcc.v3.i1.52.
Tang ZX, Lv BF (2014)MgO nanoparticles as antibacterial agent: preparation and activity. Braz. J. Chem. Eng. https://doi.org/10.1590/0104-6632.20140313s00002813.
Kwun IS, Cho YE, R.A.R. Lomeda, H.I. Shin, J.Y. Choi, Y.H. Kang, J.H. Beattie, Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone. https://doi.org/10.1016/j.bone.2009.11.003.
Jung BO, Kim CH, Choi KS, Lee YM, Kim JJ (1999) Preparation of amphiphilic chitosan and their antimicrobial activities. J. Appl. Polym. Scihttps://doi.org/10.1002/(SICI)1097-4628(19990624)72:13<1713::AID-APP7>3.0.CO;2-T
González-Henríquez C, Sarabia-Vallejos M, Rodriguez-Hernandez J (2017) Advances in the fabrication of antimicrobial hydrogels for biomedical applications. Materialshttps://doi.org/10.3390/ma10030232
Song W, Ge S (2019) Application of antimicrobial nanoparticles in dentistry. Molecules 24:1033
Zhao C, Liu W, Zhu M, Wu C, Zhu Y (2022) Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review. Bioact. Mater. https://doi.org/10.1016/j.bioactmat.2022.02.010.
Pang S,Wu D, Kamutzki F, Kurreck J, Gurlo A, Hanaor DAH (2022) High performing additively manufactured bone scaffolds based on copper substituted diopside. Mater. Deshttps://doi.org/10.1016/j.matdes.2022.110480
Shaw N, Högler W (2012)in:Glorieux FH, Pettifor JM, Jüppner H (Eds.) Pediatric Bone, 2nd ed., Academic Press, San Diego.
Charbord P (2010) Bone marrow mesenchymal stem cells: historical overview and concepts. Hum. Gene Therhttps://doi.org/10.1089/hum.2010.115
Kihara T,Hirose M, Oshima A, Ohgushi H (2006) Exogenous type I collagen facilitates osteogenic differentiation and acts as a substrate for mineralization of rat marrow mesenchymal stem cells in-vitro. Biochem. Biophys. Res. Communhttps://doi.org/10.1016/j.bbrc.2006.01.059
Jung T, Lee JH, Park S, Kim YJ, Seo J, Shim HE, Moon SH (2017) Effect of BMP-2 delivery mode on osteogenic differentiation of stem cells. Stem cells Inthttps://doi.org/10.1155/2017/7859184
