Characterization of Regulatory and Transporter Genes in the Biosynthesis of Anti-Tuberculosis Ilamycins and Production in a Heterologous Host
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jensen, 2015, The marine actinomycete genus Salinispora: A model organism for secondary metabolite discovery, Nat. Prod. Rep., 32, 738, 10.1039/C4NP00167B
Amoutzias, G.D., Chaliotis, A., and Mossialos, D. (2016). Discovery strategies of bioactive compounds synthesized by nonribosomal peptide synthetases and type-I polyketide synthases derived from marine microbiomes. Mar. Drugs, 14.
Agrawal, 2017, Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential, Front. Pharmacol., 8, 828, 10.3389/fphar.2017.00828
Smolewski, 2017, The discovery and development of romidepsin for the treatment of T-cell lymphoma, Expert Opin. Drug Discov., 12, 859
Maruyama, 2017, Romidepsin in Japanese patients with relapsed or refractory peripheral T-cell lymphoma: A phase I/II and pharmacokinetics study, Int. J. Hematol., 106, 655, 10.1007/s12185-017-2286-1
Sun, 2017, Romidepsin induces G2/M phase arrest via Erk/cdc25C/cdc2/cyclinB pathway and apoptosis induction through JNK/c-Jun/caspase3 pathway in hepatocellular carcinoma cells, Biochem. Pharmacol., 127, 90, 10.1016/j.bcp.2016.12.008
Eliopoulos, 1986, In vitro and in vivo activity of LY 146032, a new cyclic lipopeptide antibiotic, Antimicrob. Agents Chemother., 30, 532, 10.1128/AAC.30.4.532
Wanger, 1987, Activity of LY146032 against Enterococci with and without high-level aminoglycoside resistance, including two penicillinase-producing strains, Antimicrob. Agents Chemother., 31, 1779, 10.1128/AAC.31.11.1779
Mccormick, 1955, Vancomycin, a new antibiotic. I. Chemical and biologic properties, Antibiot. Annu., 3, 606
Mcguire, 1955, Vancomycin, a new antibiotic. II. In vitro antibacterial studies, Antibiot. Annu., 3, 612
Griffith, 1955, Vancomycin, a new antibiotic. III. Preliminary clinical and laboratory studies, Antibiot. Annu., 3, 619
Dijkstra, 2018, In Vitro Susceptibility of Mycobacterium tuberculosis to Amikacin, Kanamycin, and Capreomycin, Antimicrob. Agents Chemother., 62, e01724-17, 10.1128/AAC.01724-17
(1961). Takeda Chemical Industries, Ltd. Ruformycin. (923938), U.S. Patent.
Takita, 1962, New antibiotics, ilamycins, J. Antibiot. Ser. A, 15, 46
Karl, P. (2000). Process for the isolation of ruformycin factors. (WO 00/78798 A1), Patent.
Ma, 2017, Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents, Nat. Commun., 8, 391, 10.1038/s41467-017-00419-5
Alaniappan, K., and Venkatraghavan, V. (2000). Rufomycin derivatives useful as antibiotics. (WO 00/78797 A1), Patent.
Choules, 2019, Rufomycin Targets ClpC1 proteolysis in Mycobacterium tuberculosis and M. abscessus, Antimicrob. Agents Chemother., 63, e02204-18, 10.1128/AAC.02204-18
Xie, 2019, Ilamycin C induces apoptosis and inhibits migration and invasion in triple-negative breast cancer by suppressing IL-6/STAT3 pathway, J. Hematol. Oncol., 12, 60, 10.1186/s13045-019-0744-3
Zhou, 2019, A natural product of marine actinomycete, inhibits triple-negative breast cancer partially through ER stress-CHOP-Bcl-2, Int. J. Biol. Sci., 15, 1723, 10.7150/ijbs.35284
Tomita, 2017, Identification and characterization of a bacterial cytochrome P450 monooxygenase catalyzing the 3-nitration of tyrosine in rufomycin biosynthesis, J. Biol. Chem., 292, 15859, 10.1074/jbc.M117.791269
Huang, 2015, Identification and characterization of the biosynthetic gene cluster of thiolutin, a tumor angiogenesis inhibitor, in Saccharothrix algeriensis NRRL B-24137, Anticancer Agents Med. Chem., 15, 277, 10.2174/1871520614666141027145200
Marshall, 1997, D-Ala-D-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB, Proc. Natl. Acad. Sci. USA, 94, 6480, 10.1073/pnas.94.12.6480
Retzlaff, 1995, The regulator of streptomycin gene expression, StrR, of Streptomyces griseus is a DNA binding activator protein with multiple recognition sites, Mol. Microbiol., 18, 151, 10.1111/j.1365-2958.1995.mmi_18010151.x
Pootoolal, 2002, Assembling the glycopeptide antibiotic scaffold: The biosynthesis of A47934 from Streptomyces toyocaensis NRRL15009, Proc. Natl. Acad. Sci. USA, 99, 8962, 10.1073/pnas.102285099
Madeira, 2019, The EMBL-EBI search and sequence analysis tools APIs in 2019, Nucleic Acids Res., 47, W636, 10.1093/nar/gkz268
Robert, 2014, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res., 42, W320, 10.1093/nar/gku316
El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., Qureshi, M., Richardson, L.J., Salazar, G.A., and Smart, A. (2019). The Pfam protein families database in 2019. Nucleic Acids Res.
Menges, 2007, The ABC transporter Tba of Amycolatopsis balhimycina is required for efficient export of the glycopeptide antibiotic balhimycin, Appl. Microbiol. Biotechnol., 77, 125, 10.1007/s00253-007-1139-x
Kaur, 1997, Expression and characterization of DrrA and DrrB proteins of Streptomyces peucetius in Escherichia coli: DrrA is an ATP binding protein, J. Bacteriol., 179, 569, 10.1128/jb.179.3.569-575.1997
Fernandez, 1996, An ABC transporter is essential for resistance to the antitumor agent mithramycin in the producer Streptomyces argillaceus, Mol. Gen. Genet., 251, 692
Linton, 1994, An ABC-transporter from Streptomyces longisporoflavus confers resistance to the polyetherionophore antibiotic tetronasin, Mol. Microbiol., 11, 777, 10.1111/j.1365-2958.1994.tb00355.x
Yang, Z., Wei, X., He, J., Sun, C., Ju, J., and Ma, J. (2019). Characterization of the noncanonical regulatory and transporter genes in atratumycin biosynthesis and production in a heterologous host. Mar. Drugs, 17.
Kaur, 2005, Biochemical characterization of domains in the membrane subunit DrrB that interact with the ABC subunit DrrA: Identification of a conserved motif, Biochemistry, 44, 2661, 10.1021/bi048959c
Xu, 2016, Functional Genome mining for metabolites encoded by large gene clusters through heterologous expression of a whole-genome bacterial artificial chromosome library in Streptomyces spp., Appl. Environ. Microbiol., 82, 5795, 10.1128/AEM.01383-16
Tu, 2018, Characterization and heterologous expression of the neoabyssomicin/abyssomicin biosynthetic gene cluster from Streptomyces koyangensis SCSIO 5802, Microb. Cell Fact., 17, 28, 10.1186/s12934-018-0875-1
Newman, 2016, Natural products as sources of new drugs from 1981 to 2014, J. Nat. Prod., 79, 629, 10.1021/acs.jnatprod.5b01055
Cragg, 2013, Natural products: A continuing source of novel drug leads, Biochim. Biophys. Acta, 1830, 3670, 10.1016/j.bbagen.2013.02.008
Bibb, 2005, Regulation of secondary metabolism in Streptomycetes, Curr. Opin. Microbiol., 8, 208, 10.1016/j.mib.2005.02.016
Liras, 2010, Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces, Curr. Opin. Microbiol., 13, 263, 10.1016/j.mib.2010.02.008
Thamm, 1997, Properties of C-terminal truncated derivatives of the activator, StrR, of the streptomycin biosynthesis in Streptomyces griseus, FEMS Microbiol. Lett., 149, 265, 10.1111/j.1574-6968.1997.tb10339.x
Tomono, 2005, Transcriptional control by A-factor of StrR, the pathway-specific transcriptional activator for streptomycin biosynthesis in Streptomyces griseus, J. Bacteriol., 187, 5595, 10.1128/JB.187.16.5595-5604.2005
Lopez, 2009, Generation of multiple cell types in Bacillus subtilis, FEMS Microbiol. Rev., 33, 152, 10.1111/j.1574-6976.2008.00148.x
Davidson, 2008, Structure, function, and evolution of bacterial ATP-binding cassette systems, Microbiol. Mol. Biol. Rev., 72, 317, 10.1128/MMBR.00031-07
Hollenstein, 2007, Structure and mechanism of ABC transporter proteins, Curr. Opin. Struct. Biol., 17, 412, 10.1016/j.sbi.2007.07.003
Zhu, 2017, Deciphering the sugar biosynthetic pathway and tailoring steps of nucleoside antibiotic A201A unveils a GDP-l-galactose mutase, Proc. Natl. Acad. Sci. USA, 114, 4948, 10.1073/pnas.1620191114
Zhang, 2013, Identification of the grincamycin gene cluster unveils divergent roles for GcnQ in different hosts, tailoring the l-rhodinose moiety, Org. Lett., 15, 3254, 10.1021/ol401253p