Đặc tính các tác động đồng thời của Phenytoin, Carbamazepine, Vinpocetine và Clorgyline lên các kênh Natri và chuyển hóa Catecholamine trong đầu tận thần kinh của chuột cống.

Neurochemical Research - Tập 34 - Trang 470-479 - 2008
María Sitges1, Blanca I. Aldana1, Luz M. Chiu1, Vladimir Nekrassov2
1Depto. de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico, Mexico
2División de Investigación Básica y Aplicada, Instituto Nacional de Rehabilitación, SSA, Mexico, Mexico

Tóm tắt

Nghiên cứu ảnh hưởng của hai loại thuốc chống co giật cổ điển (carbamazepine và phenytoin), một loại thuốc chống co giật tiềm năng (vinpocetine) và một chất ức chế monoamine-oxidase (clorgyline) lên những biến đổi đồng thời (được phát hiện bằng HPLC) của Glu, Asp, dopamine và DOPAC bên trong và bên ngoài các đầu thần kinh tách biệt của vùng đuôi (striatal). Dưới điều kiện nghỉ ngơi, phenytoin, carbamazepine và clorgyline đều làm tăng sự phóng thích dopamine. Phenytoin và clorgyline làm tăng dopamine nội bào và giảm sự hình thành DOPAC. Carbamazepine giảm dopamine nội bào và gần như không thay đổi sự hình thành DOPAC. Sự phóng thích Glu và Asp không thay đổi. Sự phóng thích chất dẫn truyền thần kinh được thúc đẩy bởi việc mở kênh Na+ bằng veratridine đã bị giảm bởi tất cả các thuốc chống co giật đã thử nghiệm, ngoại trừ phenytoin, thuốc này giống như clorgyline, đã làm tăng sự phóng thích dopamine do veratridine gây ra. Chúng tôi kết luận rằng bên cạnh sự đối kháng mà carbamazepine, phenytoin và vinpocetine tác động lên sự phóng thích của các chất dẫn truyền thần kinh hưng phấn được kích hoạt bởi kênh Na+, điều này có thể đóng góp quan trọng vào tác dụng chống co giật của chúng, chúng còn tác động khác nhau lên phân bố dopamine tại vùng đuôi, điều này có thể giải thích sự khác biệt trong hồ sơ tác dụng phụ của chúng.

Từ khóa

#Phenytoin #Carbamazepine #Vinpocetine #Clorgyline #Kênh Na+ #Catecholamine #Dopamine #DOPAC #Nghiên cứu thuốc chống co giật

Tài liệu tham khảo

Macdonald RL, McLean MJ (1986) Anticonvulsant drugs: mechanisms of action. Adv Neurol 44:713–736 Sitges M, Peña F, Chiu LM et al (1998) Study on the possible involvement of protein kinases in the modulation of brain presynaptic sodium channels; comparison with calcium channels. Neurochem Int 32:177–190. doi:10.1016/S0197-0186(97)00065-X Sitges M (1989) Effect of organic and inorganic calcium channel blockers on s-amino-n-butyric acid release induced by monensin and veratrine in the absence of external calcium. J Neurochem 53:436–441. doi:10.1111/j.1471-4159.1989.tb07353.x Sitges M, Chiu LM (1995) w-Aga IVA selectively inhibits the calcium dependent fraction of the evoked release of [3H]GABA from synaptosomes. Neurochem Res 20:1065–1071. doi:10.1007/BF00995561 Sitges M, Galindo C (2005) Omega-agatoxin-TK is a useful tool to study P-type Ca2+ channel-mediated changes in internal Ca2+ and glutamate release in depolarised brain nerve terminals. Neurochem Int 46:53–60. doi:10.1016/j.neuint.2004.07.004 Sitges M, Chiu LM, Nekrassov V (2006) Single and combined effects of carbamazepine and vinpocetine on depolarization-induced changes in Na(+), Ca(2+) and glutamate release in hippocampal isolated nerve endings. Neurochem Int 49:55–61. doi:10.1016/j.neuint.2005.12.019 Sitges M, Chiu LM, Nekrassov V (2007) Effects of carbamazepine, phenytoin, lamotrigine, oxcarbazepine, topiramate and vinpocetine on Na+ channel-mediated release of [3H]glutamate in hippocampal nerve endings. Neuropharmacology 52:598–605. doi:10.1016/j.neuropharm.2006.09.002 Nekrassov V, Sitges M (2006) Additive effects of antiepileptic drugs and pentylenetetrazole on hearing. Neurosci Lett 406:276–280. doi:10.1016/j.neulet.2006.07.042 Hindmarch I, Fuchs HH, Erzigkeit H (1991) Efficacy and tolerance of vinpocetine in ambulant patients suffering from mild to moderate organic psychosyndromes. Int Clin Psychopharmacol 6:31–34. doi:10.1097/00004850-199100610-00005 Caksen H, Odabas D, Anlar O (2003) Use of biperiden hydrochloride in a child with severe dyskinesia induced by phenytoin. J Child Neurol 18:494–496. doi:10.1177/08830738030180070101 Girija A (2002) Paroxysmal dyskinesia in phenytoin toxicity. J Assoc Physicians India 50:1449–1450 Montenegro M, Scotoni A, Cendes F (1999) Dyskinesia induced by phenytoin. Arq Neuropsiquiatr 57:356–360 Chaudhary N, Ravat S, Shah P (1998) Phenytoin induced dyskinesia. Indian Pediatr 35:274–276 Sethi K, Hitri A, Diamond B (1990) Phenytoin potentiation of neuroleptic-induced dyskinesias. Mov Disord 5:325–327. doi:10.1002/mds.870050413 Dravet C, Dalla Bernardina B, Mesdjian E et al (1980) Paroxysmal dyskinesia during treatment with diphenylhydantoin. Rev Neurol (Paris) 136:1–14 Nausieda P, Koller W, Weiner W et al (1979) Clinical and experimental studies of phenytoin-induced hyperkinesias. J Neural Transm 45:291–305. doi:10.1007/BF01247146 Jacome D (1979) Carbamazepine-induced dystonia. JAMA 241:2263. doi:10.1001/jama.241.21.2263b Schwartzman M, Leppik I (1990) Carbamazepine-induced dyskinesia and ophthalmoplegia. Cleve Clin J Med 57:367–372 Yao H, Sadoshima S, Ishitsuka T et al (1988) Massive striatal dopamine release in acute cerebral ischemia in rats. Experientia 44:506–508. doi:10.1007/BF01958929 Kawano T, Tsutsumi K, Miyake H et al (1988) Striatal dopamine in acute cerebral ischemia of stroke-resistant rats. Stroke 19:1540–1543 Slivka A, Brannan T, Weinberger J et al (1988) Increase in extracellular dopamine in the striatum during cerebral ischemia: a study utilizing cerebral microdialysis. J Neurochem 50:1714–1718. doi:10.1111/j.1471-4159.1988.tb02468.x Hillered L, Hallström A, Segersvärd S et al (1989) Dynamics of extracellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. J Cereb Blood Flow Metab 9:607–616 Toner CC, Stamford JA (1999) Effects of metabolic alterations on dopamine release in an in vitro model of neostriatal ischaemia. Brain Res Bull 48:395–399. doi:10.1016/S0361-9230(99)00016-7 Freitas R, Oliveira Ade A, Vasconcelos SM et al (2006) Expression of muscarinic and dopaminergic receptors and monoamine levels frontal cortex of epileptic rats. Pharmacol Biochem Behav 83:302–306. doi:10.1016/j.pbb.2006.02.011 Balestreri R, Fontana L, Astengo F (1987) A double-blind placebo controlled evaluation of the safety and efficacy of vinpocetine in the treatment of patients with chronic vascular senile cerebral dysfunction. J Am Geriatr Soc 35:425–430 King GA (1987) Protective effects of vinpocetine and structurally related drugs on the lethal consequences of hypoxia in mice. Arch Int Pharmacodyn Ther 286:299–307 Sauer D, Rischke R, Beck T et al (1988) Vinpocetine prevents ischemic cell damage in rat hippocampus. Life Sci 43:1733–1739. doi:10.1016/0024-3205(88)90485-7 Rischke R, Krieglstein J (1990) Effects of vinpocetine on local cerebral blood flow and glucose utilization seven days after forebrain ischemia in the rat. Pharmacology 41:153–160. doi:10.1159/000138712 Araki T, Kogure K, Nishioka K (1990) Comparative neuroprotective effects of pentobarbital, vinpocetine, flunarizine and ifenprodil on ischemic neuronal damage in the gerbil hippocampus. Res Exp Med (Berl) 190:19–23 Trejo F, Nekrassov V, Sitges M (2001) Characterization of vinpocetine effects on DA and DOPAC release in striatal isolated nerve endings. Brain Res 909:59–67. doi:10.1016/S0006-8993(01)02621-X Willow M, Kuenzel EA, Catterall WA (1984) Inhibition of voltage-sensitive sodium channels in neuroblastoma cells and synaptosomes by the anticonvulsant drugs diphenylhydantoin and carbamazepine. Mol Pharmacol 25:228–234 Deffois A, Fage D, Carter C (1996) Inhibition of synaptosomal veratridine-induced sodium influx by antidepressants and neuroleptics used in chronic pain. Neurosci Lett 220:117–120. doi:10.1016/S0304-3940(96)13227-4 Bonifacio MJ, Sheridan RD, Parada A et al (2001) Interaction of the novel anticonvulsant, BIA 2–093, with voltage-gated sodium channels: comparison with carbamazepine. Epilepsia 42:600–608. doi:10.1046/j.1528-1157.2001.43600.x Santangeli S, Sills GJ, Thompson GG et al (2002) Na+ channel effects of remacemide and desglycinyl-remacemide in rat cortical synaptosomes. Eur J Pharmacol 438:63–68. doi:10.1016/S0014-2999(02)01297-9 Lingamaneni R, Hemmings HCJ (2003) Differential interaction of anaesthetics and antiepileptic drugs with neuronal Na+ channels, Ca2+ channels, and GABA(A) receptors. Br J Anaesth 90:199–211. doi:10.1093/bja/aeg040 Tretter L, Adam-Vizi V (1998) The neuroprotective drug vinpocetine prevents veratridine-induced [Na+]i and [Ca2+]i rise in synaptosomes. NeuroReport 9:1849–1853. doi:10.1097/00001756-199806010-00034 Sitges M, Nekrassov V (1999) Vinpocetine selectively inhibits neurotransmitter release triggered by sodium channel activation. Neurochem Res 24:1585–1591. doi:10.1023/A:1021164418478 Sitges M, Galvan E, Nekrassov V (2005) Vinpocetine blockade of sodium channels inhibits the rise in sodium and calcium induced by 4-aminopyridine in synaptosomes. Neurochem Int 46:533–540. doi:10.1016/j.neuint.2005.02.001 Selmeczy Z, Vizi E, Csóka B et al (2008) Role of nonsynaptic communication in regulating the immune response. Neurochem Int 52:52–59. doi:10.1016/j.neuint.2007.06.001 Syková E, Vargová L (2008) Extrasynaptic transmission and the diffusion parameters of the extracellular space. Neurochem Int 52:5–13. doi:10.1016/j.neuint.2007.04.007 Ravizza T, Gagliardi B, Noé F et al (2008) Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 29:142–160. doi:10.1016/j.nbd.2007.08.012 Vezzani A, Balosso S, Ravizza T (2008) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22:797–803 Shih J, Chen K, Ridd M (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197–217 Adachi Y, Watanabe K, Higuchi H et al (2001) Oxygen inhalation enhances striatal dopamine metabolism and monoamineoxidase enzyme inhibition prevents it: a microdialysis study. Eur J Pharmacol 422:61–68. doi:10.1016/S0014-2999(01)01074-3 Sitges M, Nekrassov V, Guarneros A (2000) Simultaneous action of MK-801 (dizclopine) on dopamine, glutamate, aspartate and GABA release from striatum isolated nerve endings. Brain Res 854:48–56. doi:10.1016/S0006-8993(99)02282-9 Langer S (2008) Presynaptic autoreceptors regulating transmitter release. Neurochem Int 52:26–30 Lajtha A (2008) Interrelated mechanisms in reward and learning. Neurochem Int 52:73–79. doi:10.1016/j.neuint.2007.08.019 Ahmad S, Fowler L, Whitton P (2005) Lamotrigine, carbamazepine and phenytoin differentially alter extracellular levels of 5-hydroxytryptamine, dopamine and amino acids. Epilepsy Res 63:141–149. doi:10.1016/j.eplepsyres.2005.02.002 Waldmeier P, Baumann P, Wicki P et al (1995) Similar potency of carbamazepine, oxcarbazepine, and lamotrigine in inhibiting the release of glutamate and other neurotransmitters. Neurology 45:1907–1913 Pauwels P, Van Assouw L, Peeters L et al (1990) Neurotoxic action of veratridine in rat brain neuronal cultures: mechanism of neuroprotection by Ca++ antagonists nonselective for slow Ca++ channels. J Pharmacol Exp Ther 255:1117–1122 Thán M, Kocsis P, Tihany K et al (2007) Concerted action of antiepileptic and antidepressant agents to depress spinal neurotransmission: possible use in the therapy of spasticity and chronic pain. Neurochem Int 50:642–652. doi:10.1016/j.neuint.2006.12.008 Orio L, O’Shea E, Pradillo J et al (2004) 3,4-Methylenedioxymethamphetamine increases interleukin-1beta levels and activates microglia in rat brain: studies on the relationship with acute hyperthermia and 5-HT depletion. J Neurochem 89:1445–1453. doi:10.1111/j.1471-4159.2004.02443.x Zhang L, Shirayama Y, Shimizu E et al (2006) Protective effects of minocycline on 3,4-methylenedioxymethamphetamine-induced neurotoxicity in serotonergic and dopaminergic neurons of mouse brain. Eur J Pharmacol 544:1–9. doi:10.1016/j.ejphar.2006.05.047 Lazarus A (1994) Tardive dyskinesia-like syndrome associated with lithium and carbamazepine. J Clin Psychopharmacol 14:146–147. doi:10.1097/00004714-199404000-00012 Chua H, Venketasubramanian N, Tan C et al (1999) Paradoxical seizures in phenytoin toxicity. Singapore Med J 40:276–277 Clifford D, Olney J, Benz A et al (1994) Ketamine, phencyclidine, and MK-801 protect against kainic acid-induced seizure-related brain damage. Epilepsia 31:382–390. doi:10.1111/j.1528-1157.1990.tb05492.x Peterson S (1995) Infusion of NMDA antagonists into the nucleus reticularis pontis oralis inhibits the maximal electroshock seizure response. Brain Res 702:101–109. doi:10.1016/0006-8993(95)01026-2 Carter A (1994) Many agents that antagonize the NMDA receptor-channel complex in vivo also cause disturbances of motor coordination. J Pharmacol Exp Ther 269:573–580 Sitges M, Guarneros A, Nekrassov V (2007) Effects of carbamazepine, phenytoin, valproic acid, oxcarbazepine, lamotrigine, topiramate and vinpocetine on the presynaptic Ca2+ channel-mediated release of [3H]glutamate: comparison with the Na+ channel-mediated release. Neuropharmacology 53:854–862. doi:10.1016/j.neuropharm.2007.08.016 Nekrassov V, Sitges M (2004) Vinpocetine inhibits the epileptic cortical activity and auditory alterations induced by pentylenetetrazole in the guinea pig in vivo. Epilepsy Res 60:63–71. doi:10.1016/j.eplepsyres.2004.05.005 Sitges M, Nekrassov V (2004) Vinpocetine prevents 4-aminopyridine-induced changes in the EEG, the auditory brainstem responses and hearing. Clin Neurophysiol 115:2711–2717. doi:10.1016/j.clinph.2004.06.019