Characterization of Metal Nanoparticles Aqueous Solution by a Thermoelastic Optical Indicator Microscope

Pleiades Publishing Ltd - Tập 57 - Trang 187-191 - 2022
G. A. Ohanyan1, N. G. Margaryan1, M. T. Manvelyan1, L. A. Odabashyan1, B. J. Minasyan1, A. J. Movsisyan1, R. Zh. Khachatryan2, A. Zh. Babajanyan1
1Yerevan State University, Yerevan, Armenia
2Institute of Radiophysics and Electronics, NAS of Armenia, Ashtarak, Armenia

Tóm tắt

The aqueous solution with different metal nanoparticles (NPs) characterized by a thermoelastic optical indicator microscope (TEOIM) in microwave range (8–12 GHz). The near-field interaction between radiated microwaves and aqueous solution with Ag, Zn, and Fe NPs prepared by a laser ablation process is sensitive to NPs concentration and structural characteristics in the solution at resonant frequency. The examined metal NPs maximum concentrations were 50 µg/L. The measured minimum detectable normalized signal was 0.0547, 0.0381, 0.0333 (µg/L)–1 and the measured minimum detectable concentration was about 1, 0.7, 0.6 µg/L for the Ag, Zn, Fe, respectively. Such sensitive response of measurement system can be explained not only by the electromagnetic specification variation (complex dielectric permittivity, conductivity etc.) of solution due to change of metal NPs concentration, but also by the additional structural changes in water clusters due to the NPs ablation process. In addition, TEOIM characterization method allows to visualize the electromagnetic field distribution around solution with high spatial resolution in term to investigate the dielectric liquid environment with different type and concentrations of high-conductive NPs.

Tài liệu tham khảo

Khan, I., Saeed, Kh., and Khan, I., Arabian J. Chem., 2019, vol. 12, p. 908. Salata, O.V., J. Nanobiotechnol., 2004, vol. 2, p. 3. Papadaki, D., Kiriakidis, G., and Tsoutsos, Th., Fundamentals of Nanoparticles, Ch. 11, Elsevier, 2018, pp. 343–370. Mohajerani, A., Burnett, L., Smith, J. V., Kurmus, H., Milas, J., Arulrajah, A., Horpibulsuk S., and Abdul Kadir, A., Materials, 2019, vol. 12, p. 3052. Elmi, F., Alinezhad, H., Moulana, Z., Salehian, F., Mohseni S., Fariba Asgharpour, T., Fallah, H., and Mitra Elmi, M., Water Sci. Technol., 2004, vol. 70, p. 763. Yang, J., Hou, B., Wang, J., Tian, Jingtao Bi, B., Wang, N., Li, X., and Huang, X., Nanomaterials, 2019, vol. 9, p. 424. Xu, L., Wang, Y.-Y., Huang, J., Chen, Ch.-Y., Wang, Zh.-X., Xie, H., Theranostics, 2020, vol. 10, p. 8996. Singh, M., Singh, Sh., Prasada, S., Gambhir, I. S., Digest J. Nanomater. Biostructur., 2008, vol. 3, p. 115. Odabashyan, L., Margaryan, N., Ohanyan, G., Manvelyana, M., Hambaryana, D., Abrahamyana, T., Khachatryanb, R., and Babajanyana, A., J. Contemp. Phys., 2020, vol. 55 p. 171. Abrahamyan, T., Khachatryan, R., Hambaryan, D., Hovhannisyan, B., Minasyan, B., Odabashyan, L., and Babajanyan, A., J. Contemp. Phys., 2019, vol. 54, p. 196. Lee, H., Arakelyan, Sh., Friedman, B., and Lee, K., Sci. Rep., 2016, vol. 6, p. 39696. Baghdasaryan, Zh., Babajanyan, A., Odabashyan, L., Lee, J.‑H., Friedman, B., and Lee, K., Sci. Rep., 2021, vol. 11, p. 2589.