Characterization of Hydrogeochemical Processes and Fluoride Enrichment in Groundwater of South-Western Punjab

Anand Kumar1, Chander Kumar Singh2
1Teri University
2Department of Natural Resources, TERI University, Vasant Kunj, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Appelo CAJ, Postma D (1996) Geochemistry. Groundwater and pollution. AA Balkema, Rotterdam, The Netherlands

Barbecot F, Marlin C, Gibert E, Dever L (2000) Hydrochemical and isotopic characterization of the Bathonian and Bajocian coastal aquifer of the Caen area (northern France). Appl Geochem 15:791–805

Bartarya SK (1993) Hydrochemistry and rock weathering in a sub-tropical lesser Himalayan river basin in Kumaun, India. J Hydrol 146:149–174

Beaucaire C, Gassama N, Tresonne N, Louvat D (1995) Geochemical evolution of saline waters in crystalline rocks: Chardon mine (France)—part I: behavior of main ions. In: Kharaka YK, Chudaev OV (eds) Water–rock interaction: proceedings of the 8th international symposium on water–rock interaction. A.A. Balkema, Rotterdam, The Netherlands, pp 433–436

Belkhiri L, Boudoukha A, Mouni L, Baouz T (2010) Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—a case study: Ain Azel plain (Algeria). Geoderma 159:390–398

Bureau of Indian Standard (1995) Specification for drinking water. ISO 10500. ISI, New Delhi

Datta PS, Bhattacharya SK, Tyagi SK (1996) $$^{18}\text{ O }$$ 18 O studies on recharge of phreatic aquifers and groundwater flow-paths of mixing in the Delhi area. J Hydrol 176:25–36

Davis SN, Dewiest RJM (1967) Hydrogeology. Wiley, New York

Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New York

Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall Inc., Englewood Cliffs, New Jersey

Hamilton PA, Helsel DR (1995) Effects of agriculture on ground-water quality in five regions of the United States. Groundwater 33(2):217–226

He X, Ma T, Wang Y, Shan H, Deng Y (2013) Hydrogeochemistry of high fluoride groundwater in shallow aquifers, Hangjinhouqi, Hetao Plain. J Geochem Explor 135:63–70

Helena B, Pardo R, Vega M, Barrado E, Fernandez JM, Fernandez L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principle component analysis. Wat Res 34(3):807–816

Kavidha R, Elangovan K (2010) Utility of groundwater for various purposes in Erode district, Tamilnadu, India. Int J Appl Environ Sci 5:707–728

Kim JH, Kim RH, Lee J, Cheong TJ, Yum BW, Chang HW (2005) Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje, South Korea. Hydrol Process 19:1261–1276

Kolahchi Z, Jalali M (2006) Simulating leaching of potassium in a sandy soil using simple and complex models. Agric Wat Manag 85(1/2):85–94

Li J, Wang Y, Xie X, Su C (2012) Hierarchical cluster analysis of arsenic and fluoride enrichments in groundwater from the Datong basin, Northern China. J Geochem Explor 118:77–89

Markovic T, Brkic Z, Larva O (2013) Using hydrochemical data and modelling to enhance the knowledge of groundwater flow and quality in an alluvial aquifer of Zagreb, Croatia. Sci Total Environ 458–460:508–516

Mazlum N, Ozer A, Mazlum S (1996) Interpretation of water quality data by principal component analysis. J Eng Environ Sci 23:19–26

Mirbagheri SA, Jamshidzadeh Z (2011) Evaluation of groundwater quantity and quality in the Kashan Basin, Central Iran. Desalination 270:23–30

Mrazovaca S, Miloradov MV, Matic I, Maric N (2013) Multivariate statistical analyzing of chemical parameters of groundwater in Vojvodina. Chemie der Erde 73:217–225

Prasanna MV, Chidambaram S, Srinivasamoorthy K (2010) Statistical analysis of the hydrogeochemical evolution of groundwater in hard and sedimentary aquifers system of Gadilam river basin, South India. J King Saud Univ (Sci) 22:133–145

Reghunath R, Murthy TRS, Raghavan BR (2002) The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India. J Water Resour 36:2437–2442

Rina K, Datta PS, Singh CK, Mukherjee S (2012) Characterization and evaluation of processes governing the groundwater quality in parts of the Sabarmati basin, Gujarat using hydrochemistry integrated with GIS. Hydrol Process 26(10):1538–1551

Rina K, Singh CK, Datta PS, Singh N, Mukherjee S (2013) Geochemical modelling, ionic ratio and GIS based mapping of groundwater salinity and assessment of governing processes in Northern Gujarat, India. Environ Earth Sci 69(7):2377–2391

Rina K, Datta PS, Singh CK, Mukherjee S (2014) Determining the genetic origin of nitrate contamination in aquifers of Northern Gujarat, India. Environ Earth Sci 71(4):1711–1719

Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002

Rukah YA, Alsokhny K (2004) Geochemical assessment of groundwater contamination with special emphasis on fluoride concentration, North Jordan. Chemie der Erde 64:171–181

Schoeller H (1965) Quantitative evaluation of groundwater resource. In: Methods and techniques of groundwater investigation and development. UNESCO, pp 54–83

Sikdar PK, Sarkar SS, Palchoudhury S (2001) Geochemical evolution of groundwater in the Quaternary aquifer of Calcutta and Howrah, India. J Asian Earth Sci 19:579–594

Singh CK, Mukherjee S (2014) Aqueous geochemistry of fluoride enriched groundwater in arid part of Western India. Environ Sci Pollut Res 1–11. doi: 10.1007/s11356-014-3504-5

Singh KP, Malik A, Singh VK, Mohan D, Sinha S (2005) Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. Anal Chimica Acta 550:82–91

Singh CK, Shashtri S, Mukherjee S (2011a) Integrating multivariate statistical analysis with GIS for geochemical assessment of groundwater quality in Shiwaliks of Punjab, India. Environ Earth Sci 62:1387–1405

Singh CK, Kumari R, Singh RP, Shashtri S, Kamal V, Mukherjee S (2011b) Geochemical modeling of high fluoride concentration in groundwater of Pokhran area of Rajasthan, India. Bull Environ Contam Toxicol 86(2):152–158

Singh CK, Shashtri S, Kumari R, Mukherjee S (2013b) Chemometric analysis to infer hydro-geochemical processes in a semi-arid region of India. Arab J Geosci 6:2915–2932

Singh CK, Kumari R, Singh N, Mallik J, Mukherjee S (2013a) Fluoride enrichment in aquifers of the Thar desert: controlling factors and its geochemical modeling. Hydrol Process 27:2462–2474

Srinivasamoorthy K, Chidambaram S, Prasanna MV, Vasanthavihar M, Peter J, Anandhan P (2008) Identification of major sources controlling groundwater chemistry from a hard rock terrain—a case study from Metturtaluk, Salem district, Tamil Nadu. J Earth Syst Sci 117:49–58

Srinivasmoorthy K, Gopinath M, Chidambram S, Vasanthavigar M (2014) Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. J King Saud Univ (Sci) 26:37–52

Subba Rao N (2006) Seasonal variation of groundwater quality in a part of Guntur District, Andhra Pradesh, India. Environ Geol 49:413–429

Subramanian V, Saxena K (1983) Hydro-geochemistry of groundwater in the Delhi region of India, relation of water quality and quantity. Proceedings of the Hamberg symposium IAHS 146:307–316

US Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkaline soils. USDA handbook No. 60. USDA, Washington, DC

World Health Organization (WHO) (2009) Guidelines for drinking water quality. World Health Organization, Geneva

Xing L, Guo H, Zhan Y (2013) Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. J Asian Earth Sci 70–71:250–264

Xue YQ, Wu JC, Ye SJ, Zhang YX (2000) Hydrogeological and hydrogeochemical studies for salt water intrusion the south coast of Laizhou Bay, China. Groundwater 38(1):38–45

Yakubo BB, Yidana SM, Nti E (2009) Hydrochemical analysis of groundwater using multivariate statistical methods—the Volta region, Ghana. KSCE J Civil Eng 13(1):55–63

Yidana SM, Yidana A (2010) Assessing water quality using water quality index and multivariate analysis. Environ Earth Sci 59(7):1461–1473