Characterization of Family D DNA polymerase from Thermococcus sp. 9°N
Tóm tắt
Accurate DNA replication is essential for maintenance of every genome. All archaeal genomes except Crenarchaea, encode for a member of Family B (polB) and Family D (polD) DNA polymerases. Gene deletion studies in Thermococcus kodakaraensis and Methanococcus maripaludis show that polD is the only essential DNA polymerase in these organisms. Thus, polD may be the primary replicative DNA polymerase for both leading and lagging strand synthesis. To understand this unique archaeal enzyme, we report the biochemical characterization of a heterodimeric polD from Thermococcus. PolD contains both DNA polymerase and proofreading 3′–5′ exonuclease activities to ensure efficient and accurate genome duplication. The polD incorporation fidelity was determined for the first time. Despite containing 3′–5′ exonuclease proofreading activity, polD has a relatively high error rate (95 × 10−5) compared to polB (19 × 10−5) and at least 10-fold higher than the polB DNA polymerases from yeast (polε and polδ) or Escherichia coli DNA polIII holoenzyme. The implications of polD fidelity and biochemical properties in leading and lagging strand synthesis are discussed.
Từ khóa
Tài liệu tham khảo
Beese LS, Steitz TA (1991) Structural basis for the 3′–5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J 10(1):25–33
Berquist BR, DasSarma P, DasSarma S (2007) Essential and non-essential DNA replication genes in the model halophilic Archaeon, Halobacterium sp. NRC-1. BMC Genet 8:31
Braithwaite DK, Ito J (1993) Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res 21(4):787–802
Cann IK, Komori K, Toh H, Kanai S, Ishino Y (1998) A heterodimeric DNA polymerase: evidence that members of Euryarchaeota possess a distinct DNA polymerase. Proc Natl Acad Sci USA 95(24):14250–14255
Cubonova L, Richardson T, Burkhart BW, Kelman Z, Connolly BA, Reeve JN, Santangelo TJ (2013) Archaeal DNA polymerase D but not DNA polymerase B is required for genome replication in Thermococcus kodakarensis. J Bacteriol 195:2322–2328
Derbyshire V, Grindley ND, Joyce CM (1991) The 3′–5′ exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. EMBO J 10(1):17–24
Dong Q, Copeland WC, Wang TS (1993) Mutational studies of human DNA polymerase alpha. Identification of residues critical for deoxynucleotide binding and misinsertion fidelity of DNA synthesis. J Biol Chem 268(32):24163–24174
Fijalkowska IJ, Jonczyk P, Tkaczyk MM, Bialoskorska M, Schaaper RM (1998) Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome. Proc Natl Acad Sci USA 95(17):10020–10025
Gibson DG (2011) Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 498:349–361
Gueguen Y, Rolland JL, Lecompte O, Azam P, Le Romancer G, Flament D, Raffin JP, Dietrich J (2001) Characterization of two DNA polymerases from the hyperthermophilic euryarchaeon Pyrococcus abyssi. FEBS 268(22):5961–5969
Henneke G (2012) In vitro reconstitution of RNA primer removal in Archaea reveals the existence of two pathways. Biochem J 447(2):271–280
Henneke G, Flament D, Hübscher U, Querellou J, Raffin J-P (2005) The hyperthermophilic euryarchaeota Pyrococcus abyssi likely requires the two DNA polymerases D and B for DNA replication. J Mol Biol 350(1):53–64
Indiani C, O’Donnell M (2006) The replication clamp-loading machine at work in the three domains of life. Nat Rev Mol Cell Biol 7(10):751–761
Ishino Y, Ishino S (2012) Rapid progress of DNA replication studies in Archaea, the third domain of life. Science China Life Sci 55(5):386–403. doi:10.1007/s11427-012-4324-9
Ishino Y, Komori K, Cann IK, Koga Y (1998) A novel DNA polymerase family found in Archaea. J Bacteriol 180(8):2232–2236
Jokela M, Eskelinen A, Pospiech H, Rouvinen J, Syväoja JE (2004) Characterization of the 3′–5′ exonuclease subunit DP1 of Methanococcus jannaschii replicative DNA polymerase D. Nucleic Acids Res 32(8):2430–2440
Jokela M, Raki M, Heikkinen K, Sepponen K, Eskelinen A, Syväoja JE (2005) The screening of expression and purification conditions for replicative DNA polymerase associated B-subunits, assignment of the exonuclease activity to the C-terminus of archaeal pol D DP1 subunit. Protein Express Purif 43(1):73–84
Joyce CM, Steitz TA (1995) Polymerase structures and function: variations on a theme? J Bacteriol 177(22):6321–6329
Kermekchiev MB, Tzekov A, Barnes WM (2003) Cold-sensitive mutants of Taq DNA polymerase provide a hot start for PCR. Nucleic Acids Res 31(21):6139–6147
Kong H, Kucera RB, Jack WE (1993) Characterization of a DNA polymerase from the hyperthermophile archaea Thermococcus litoralis. Vent DNA polymerase, steady state kinetics, thermal stability, processivity, strand displacement, and exonuclease activities. J Biol Chem 268(3):1965–1975
Krokan H, Wist E, Krokan RH (1981) Aphidicolin inhibits DNA synthesis by DNA polymerase alpha and isolated nuclei by a similar mechanism. Nucleic Acids Res 9(18):4709–4719
Kuba Y, Ishino S, Yamagami T, Tokuhara M, Kanai T, Fujikane R, Daiyasu H, Atomi H, Ishino Y (2012) Comparative analyses of the two proliferating cell nuclear antigens from the hyperthermophilic archaeon, Thermococcus kodakarensis. Genes Cells 17(11):923–937
Kunkel TA (2009) Evolving views of DNA replication (in)fidelity. Cold Spring Harbor Symp Quant Biol 74:91–101
Ladner JE, Pan M, Hurwitz J, Kelman Z (2011) Crystal structures of two active proliferating cell nuclear antigens (PCNAs) encoded by Thermococcus kodakaraensis. Proc Natl Acad Sci USA 108(7):2711–2716
Li Z, Santangelo TJ, Cuboňová L, Reeve JN, Kelman Z (2010) Affinity purification of an archaeal DNA replication protein network. mBio 1 (5).
Li Z, Pan M, Santangelo TJ, Chemnitz W, Yuan W, Edwards JL, Hurwitz J, Reeve JN, Kelman Z (2011) A novel DNA nuclease is stimulated by association with the GINS complex. Nucleic Acids Res 39(14):6114–6123
Li Z, Kelman LM, Kelman Z (2013) Thermococcus kodakarensis DNA replication. Biochem Soc Trans 41(1):332–338
Matsui I, Urushibata Y, Shen Y, Matsui E, Yokoyama H (2011) Novel structure of an N-terminal domain that is crucial for the dimeric assembly and DNA-binding of an archaeal DNA polymerase D large subunit from Pyrococcus horikoshii. FEBS Lett 585(3):452–458
Mattila P, Korpela J, Tenkanen T, Pitkänen K (1991) Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase-an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res 19(18):4967–4973
Mayanagi K, Kiyonari S, Nishida H, Saito M, Kohda D, Ishino Y, Shirai T, Morikawa K (2011) Architecture of the DNA polymerase B-proliferating cell nuclear antigen (PCNA)-DNA ternary complex. Proc Natl Acad Sci USA 108(5):1845–1849
McHenry CS (2011) Bacterial replicases and related polymerases. Curr Opin Chem Biol 15(5):587–594
Motz M, Kober I, Girardot C, Loeser E, Bauer U, Albers M, Moeckel G, Minch E, Voss H, Kilger C, Koegl M (2002) Elucidation of an archaeal replication protein network to generate enhanced PCR enzymes. J Biol Chem 277(18):16179–16188
Myllykallio H, Lopez P, López-García P, Heilig R, Saurin W, Zivanovic Y, Philippe H, Forterre P (2000) Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 288(5474):2212–2215
Pan M, Kelman LM, Kelman Z (2011) The archaeal PCNA proteins. Biochem Soc Trans 39(1):20–24
Perler FB (2002) InBase: the Intein Database. Nucleic Acids Res 30(1):383–384
Perler FB, Comb DG, Jack WE, Moran LS, Qiang B, Kucera RB, Benner J, Slatko BE, Nwankwo DO, Hempstead SK (1992) Intervening sequences in an Archaea DNA polymerase gene. Proc Natl Acad Sci USA 89(12):5577–5581
Pham PT, Olson MW, McHenry CS, Schaaper RM (1998) The base substitution and frameshift fidelity of Escherichia coli DNA polymerase III holoenzyme in vitro. J Biol Chem 273(36):23575–23584
Reha-Krantz LJ (2010) DNA polymerase proofreading: multiple roles maintain genome stability. Biochim Biophys Acta 1804(5):1049–1063
Rodriguez A, Park H, Mao C, Beese L (2000) Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7. J Mol Biol 299(2):447–462
Rouillon C, Henneke G, Flament D, Querellou J, Raffin J-P (2007) DNA polymerase switching on homotrimeric PCNA at the replication fork of the euryarchaeota Pyrococcus abyssi. J Mol Biol 369(2):343–355
Sarmiento F, Mrazek J, Whitman WB (2013) Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis. Proc Natl Acad Sci USA 110(12):4726–4731
Shcherbakova PV, Pavlov YI, Chilkova O, Rogozin IB, Johansson E, Kunkel TA (2003) Unique error signature of the four-subunit yeast DNA polymerase epsilon. J Biol Chem 278(44):43770–43780
Shen Y, Musti K, Hiramoto M, Kikuchi H, Kawarabayashi Y, Matsui I (2001) Invariant Asp-1122 and Asp-1124 are essential residues for polymerization catalysis of family D DNA polymerase from Pyrococcus horikoshii. J Biol Chem 276(29):27376–27383
Shen Y, Tang X-F, Matsui I (2003) Subunit interaction and regulation of activity through terminal domains of the family D DNA polymerase from Pyrococcus horikoshii. J Biol Chem 278(23):21247–21257
Shen Y, Tang X-F, Matsui E, Matsui I (2004a) Subunit interaction and regulation of activity through terminal domains of the family D DNA polymerase from Pyrococcus horikoshii. Biochem Soc Trans 32(Pt 2):245–249
Shen Y, Tang X-F, Yokoyama H, Matsui E, Matsui I (2004b) A 21-amino acid peptide from the cysteine cluster II of the family D DNA polymerase from Pyrococcus horikoshii stimulates its nuclease activity which is Mre11-like and prefers manganese ion as the cofactor. Nucleic Acids Res 32(1):158–168
Southworth MW, Kong H, Kucera RB, Ware J, Jannasch HW, Perler FB (1996) Cloning of thermostable DNA polymerases from hyperthermophilic marine Archaea with emphasis on Thermococcus sp. 9 degrees N-7 and mutations affecting 3′–5′ exonuclease activity. Proc Natl Acad Sci USA 93(11):5281–5285
Suzuki M, Avicola AK, Hood L, Loeb LA (1997) Low fidelity mutants in the O-helix of Thermus aquaticus DNA polymerase I. J Biol Chem 272(17):11228–11235
Tang X-F, Shen Y, Matsui E, Matsui I (2004) Domain topology of the DNA polymerase D complex from a hyperthermophilic archaeon Pyrococcus horikoshii. Biochemistry 43(37):11818–11827
Yamasaki K, Urushibata Y, Yamasaki T, Arisaka F, Matsui I (2010) Solution structure of the N-terminal domain of the archaeal D-family DNA polymerase small subunit reveals evolutionary relationship to eukaryotic B-family polymerases. FEBS Lett 584(15):3370–3375
Yamtich J, Sweasy JB (2010) DNA polymerase family X: function, structure, and cellular roles. Biochim Biophys Acta 1804(5):1136–1150
Zhang L, Brown JA, Newmister SA, Suo Z (2009) Polymerization fidelity of a replicative DNA polymerase from the hyperthermophilic archaeon Sulfolobus solfataricus P2. Biochemistry 48(31):7492–7501
Zhang L, Lou H, Guo L, Zhan Z, Duan Z, Guo X, Huang L (2010) Accurate DNA synthesis by Sulfolobus solfataricus DNA polymerase B1 at high temperature. Extremophiles 14(1):107–117