Characterization of Chromiferrous Pyroxenite and Its Application as Flux in Ferrochrome Production Through an Industrial-Scale Submerged Arc Furnace

Journal of Sustainable Metallurgy - Tập 8 Số 4 - Trang 1650-1661 - 2022
Nilamadhaba Sahu1, Sunil Kumar Tripathy2, Umesh Prasad Rath3, Biranchi Narayan Rout4, Aditya Roshan5, Gajanan Kapure2, Arijit Biswas2
1Tata Steel Ltd.
2Research and Development Division, Tata Steel Ltd., Jamshedpur, India
3Tata Steel BSL Ltd, Dhenkanal, India
4Ferro Alloy Minerals Division, Tata Steel Ltd., Bamnipal, India
5Business Performance Enhancement, Tata Steel Ltd., Jamshedpur, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arai S (2021) Genetic link between podiform chromitites in the mantle and stratiform chromitites in the crust: a hypothesis. Minerals 11:209. https://doi.org/10.3390/min11020209

Schulte RF, Taylor RD, Piatak NM, Seal ll RR (2012) Stratiform chromite deposit model, chapter E of Mineral deposit models for resource assessment: U.S. Geological survey scientific investigations report, 2010-5070–E:1-131. https://pubs.usgs.gov/sir/2010/5070/e/pdf/sir2010-5070e_LR.pdf. Accessed 2 Oct 2021

Tiwary RK, Dhakate R, Rao VA, Singh VS (2005) Assessment and prediction of contaminant migration in ground water from chromite waste dump. Environ Geol 48:420–429. https://doi.org/10.1007/s00254-005-1233-2

Pal J, Ghorai S, Nandi B, Chakraborty T, Das G, Venugopalan T (2015) Effect of pyroxenite and olivine minerals as source of MgO in hematite pellet on improvement of metallurgical properties. J Central South Univ 22:3302–3310. https://doi.org/10.1007/s11771-015-2870-6

Dwarapudi S, Ghosh TK, Shankar A, Tathavadkar V, Bhattacharjee D, Venugopal R (2010) Effect of pyroxenite flux on the quality and microstructure of hematite pellets. Int J Miner Process 96:45–53. https://doi.org/10.1016/j.minpro.2010.06.002

Agrawal A, Das K, Singh BK, Singh RS, Tripathi VR, Kundu S, Padmapal RRV, Singh MK (2020) Means to cope with the higher alumina burden in the blast furnace. Ironmak Steelmak 47:238–245. https://doi.org/10.1080/03019233.2019.1702828

Erwee MW, Geldenhuys IJ, Sitefane MB, Masipa M (2018) Fluxing of South African chromite ore with colemanite. J S Afr Inst Min Metall 118:661–670. https://doi.org/10.17159/2411-9717/2018/v118n6a15

Weber P, Eric RH (1993) The reduction mechanism of chromite in the presence of a silica flux. Metall Trans B 24:987–995. https://doi.org/10.1007/BF02660990

Neuschiitz D, JanBen P, Friedrich G, Wiechowski A (1995) Effect of flux additions on the kinetics of chromite ore reduction with carbon. Infacon 7:371–382

Yonggao C (1998) Studies on factors affecting carbon content in ferrochrome and chromium content in slag. Infacon 8:189–194

Jones RT, Erwee MW (2016) Simulation of ferro-alloy smelting in D.C. arc furnaces using Pyrosim and FactSage. Calphad 55:20–25. https://doi.org/10.1016/j.calphad.2016.05.003

Agarwal S, Pal J, Ghosh D (2016) Smelting characteristics of fluxed chromite sinter and its performance assessment in electric arc furnace to produce high carbon ferrochrome. Ironmak Steelmak 43:97–111. https://doi.org/10.1179/1743281215Y.0000000054

Logar V, Dovzan D, Skrjanc I (2011) Mathematical modeling and experimental validation of an electric arc furnace. ISIJ Int 51:382–439. https://doi.org/10.2355/isijinternational.51.382

Thibodeau E, Jung IH (2016) A structural electrical conductivity model for oxide melts. Metall Mater Trans B 47:355–383. https://doi.org/10.1007/s11663-015-0458-z

Zhang J (2000) Carbon solubility and mass action concentrations of Fe–Cr–C melts. Infacon 8:195–200

Xiao Y, Yang Y, Holappa L, Boom R (2001) Microstructure changes of chromite reduced with CO gas. Infacon 9:133–144

FactSage software, CRCT-ThermFact Inc., and GTT-Technologies. http://www.factsage.com