Characterization of Changes to the Mechanical Properties of Arteries due to Cold Storage Using Nanoindentation Tests

Springer Science and Business Media LLC - Tập 40 - Trang 1434-1442 - 2012
Ali Hemmasizadeh1, Kurosh Darvish1, Michael Autieri2
1Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, USA
2Department of Physiology, School of Medicine, Temple University, Philadelphia, USA

Tóm tắt

Understanding the effect of cold storage on arterial tissues is essential in various clinical and experimental practices. Cold storage techniques could significantly affect the post-cryosurgical or post-cryopreservation mechanical behavior of arteries. Previously, arteries were considered homogenous and elastic and the changes in material properties due to cold storage were inconclusive. In this study, using a custom-made nanoindentation device, changes to the local viscoelastic properties of porcine thoracic aorta wall due to three common storage temperatures (+4, −20, and −80 °C) within 24 h, 48 h, 1 week, and 3 weeks were characterized. The changes to both elastic and relaxation behaviors were investigated considering the multilayer, heterogeneous nature of the aortic wall. The results showed that the average instantaneous Young’s modulus (E) of +4 °C storage samples decreased while their permanent average relaxation amplitude (G ∞) increased and after 48 h these changes became significant (10 and 13% for E and G ∞, respectively). Generally, in freezer storage, E increased and G ∞ showed no significant change. In prolonged preservation (>1 week), the results of −20 °C showed significant increase in E (20% after 3 weeks) while this increase for −80 °C was not significant, making it a better choice for tissue cold storage applications.

Tài liệu tham khảo

Adham, M., J. P. Gournier, J. P. Favre, E. D. L. Roche, C. Ducerf, J. Baulieux, X. Barral, and M. Pouyet. Mechanical characteristics of fresh and frozen human descending thoracic aorta. J. Surg. Res. 64:32–34, 1996. Akhtar, R., N. Schwarzer, M. J. Sherratt, R. E. B. Watson, H. K. Graham, A. W. Trafford, P. M. Mummery, and B. Derby. Nanoindentation of histological specimens: mapping the elastic properties of soft tissues. J. Mater. Res. 24:638–646, 2009. Cao, Y., D. Yang, and W. Soboyejoy. Nanoindentation method for determining the initial contact and adhesion characteristics of soft polydimethylsiloxane. J. Mater. Res. 20:2004–2011, 2005. Chow, M. J., and Y. Zhang. Changes in the mechanical and biochemical properties of aortic tissue due to cold storage. J. Surg. Res. 171:434–442, 2011. Ebenstein, D. M. Nano-JKR force curve method overcomes challenges of surface detection and adhesion for nanoindentation of a compliant polymer in air and water. J. Mater. Res. 26:1026–1035, 2011. Ebenstein, D. M., and L. A. Pruitt. Nanoindentation of soft hydrated materials for application to vascular tissues. J. Biomed. Mater. Res. 69A:222–232, 2004. Fung, Y. C. Biomechanics Mechanical Properties of Living Tissues. New York: Springer, 568 pp., 1996. Graham, H. K., R. Akhtar, C. Kridiotis, B. Derby, T. Kundu, A. W. Trafford, and M. J. Sherratt. Localised micro-mechanical stiffening in the ageing aorta. Mech. Ageing Dev. 132:459–467, 2011. Gupta, S., F. Carrillo, M. Balooch, L. Pruitt, and C. Puttlitz. Simulated soft tissue nanoindentation: a finite element study. J. Mater. Res. 20:1979–1994, 2005. Hawkins, J. A., N. D. Hillman, L. M. Lambert, J. Jones, G. B. Di Russo, T. Profaizer, T. C. Fuller, L. Minich, R. V. Williams, and R. E. Shaddy. Immunogenicity of decellularized cryopreserved allografts in pediatric cardiac surgery: comparison with standard cryopreserved allografts. J. Thorac. Cardiovasc. Surg. 126:247–252, 2003. Holzapfel, G. A., and C. T. Gasser. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005. Kaufman, J. D. Surface detection errors cause overestimation of the modulus in nanoindentation on soft materials. J. Mech. Behav. Biomed. Mater. 2:312–317, 2009. Lally, C., A. J. Reid, and P. J. Prendergast. Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. Ann. Biomed. Eng. 32:1355–1364, 2004. Leseche, G., Y. Castier, M. Petit, P. Bertrand, M. Kitzis, S. Mussot, M. Besnard, and O. Cerceau. Long-term results of cryopreserved arterial allograft reconstruction in infected prosthetic grafts and mycotic aneurysm of the abdominal aorta. J. Vasc. Surg. 34:616–622, 2001. Levental, I., K. R. Levental, E. A. Klein, R. Assoian, R. T. Miller, R. G. Wells, and P. A. Janmey. A simple indentation device for measuring micrometer-scale tissue stiffness. J. Phys. Condens. Matter 22:194120–194129, 2010. Matsumoto, T., T. Goto, T. Furukawa, and M. Sato. Residual stress and strain in the lamellar unit of the porcine aorta: experiment and analysis. J. Biomech. 37:807–815, 2004. Muller-Schweinitzer, E., M. Grapow, M. A. Konerding, and H. R. Zerkowski. Freezing without surrounding cryomedium preserves the endothelium and its function in human internal mammary arteries. Cryobiology 51:54–65, 2005. O’Connell, M. K., S. Murthy, S. Phan, C. Xu, J. Buchanan, R. Spilker, R. L. Dalman, C. K. Zarins, W. Denk, and C. A. Taylor. The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biol. 27:171–181, 2008. Pascual, G., C. Escudero, M. Rodriguez, C. Corrales, N. Serrano, J. M. Bellon, and J. Bujan. Restoring the endothelium of cryopreserved arterial grafts: co-culture of venous and arterial endothelial cells. Cryobiology 49:272–285, 2004. Pukacki, F., T. Jankowski, M. Gabriel, G. Oszkinis, Z. Krasinski, and S. Zapalski. The mechanical properties of fresh and cryopreserved arterial homografts. Eur. J. Vasc. Endovasc. Surg. 20:21–24, 2000. Qi, H. J., K. Joyce, and M. C. Boyce. Durometer hardness and the stress–strain behavior of elastomeric materials. Rubber Chem. Technol. 72:419–435, 2003. Simo, J. C., and T. J. R. Hughes. Computational Inelasticity. New York: Springer, 392 pp., 1998. Sneddon, I. N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3:47–57, 1965. Solanes, N., M. Rigol, M. Castella, E. Khabiri, J. Ramirez, J. Segales, M. Roque, E. Agusti, F. Perez-Villa, E. Roig, J. L. Pomar, G. Sanz, and M. Heras. Cryopreservation alters antigenicity of allografts in a porcine model of transplant vasculopathy. Transpl. Proc. 36:3288–3294, 2004. Stemper, B. D., N. Yoganandan, M. R. Stineman, T. A. Gennarelli, J. L. Baisden, and F. A. Pintar. Mechanics of fresh, refrigerated, and frozen arterial tissue. J. Surg. Res. 139:236–242, 2007. Teng, Z., D. Tang, J. Zheng, P. K. Woodard, and A. H. Hoffman. An experimental study on the ultimate strength of the adventitia and media of human atherosclerotic carotid arteries in circumferential and axial directions. J. Biomech. 42:2535–2539, 2009. Venkatasubramanian, R. T., E. D. Grassl, V. H. Barocas, D. Lafontaine, and J. C. Bischo. Effects of freezing and cryopreservation on the mechanical properties of arteries. Ann. Biomed. Eng. 34:823–832, 2006. Xu, Y., T. C. Hua, D. W. Sun, and G. Y. Zhou. Experimental study and analysis of mechanical properties of frozen rabbit aorta by fracture mechanics approach. J. Biomech. 41:649–655, 2008.