Characterization of AmpC β-lactamase mutations of extensively drug-resistant Pseudomonas aeruginosa isolates that develop resistance to ceftolozane/tazobactam during therapy

Marta Fernández-Esgueva1, Ana Isabel López-Calleja1, Xavier Mulet2, Pablo A. Fraile-Ribot2, Gabriel Cabot2, Rafael Huarte3, Antonio Rezusta1, Antonio Oliver2
1Servicio de Microbiología, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain
2Servicio de Microbiología y Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
3Servicio de Farmacia, Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza, Spain

Tài liệu tham khảo

Livermore, 2009, Has the era of untreatable infections arrived?, J Antimicrob Chemother, 64, i29, 10.1093/jac/dkp255 Zhanel, 2014, Ceftolozane/tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant Gram-negative bacilli, Drugs, 74, 31, 10.1007/s40265-013-0168-2 Cluck, 2015, Ceftolozane–tazobactam: a new-generation cephalosporin, Am J Heal Pharm, 72, 2135, 10.2146/ajhp150049 Moya, 2010, Activity of a new cephalosporin, CXA-101 (FR264205), against β-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit patients, Antimicrob Agents Chemother, 54, 1213, 10.1128/AAC.01104-09 Fraile-Ribot, 2018, Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa, J Antimicrob Chemother, 73, 658, 10.1093/jac/dkx424 Haidar, 2017, Ceftolozane–tazobactam for the treatment of multidrug-resistant Pseudomonas aeruginosa infections: clinical effectiveness and evolution of resistance, Clin Infect Dis, 65, 110, 10.1093/cid/cix182 Skoglund, 2018, In vivo resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa arising by AmpC- and non-AmpC-mediated pathways, Case Rep Infect Dis, 2018, 1 Magiorakos, 2012, Multidrug-resistant, extensively drug-resistant and pandrugresistant bacteria: an international expert proposal for interim standard definitions for acquired resistance, Clin Microbiol Infect, 18, 268, 10.1111/j.1469-0691.2011.03570.x Fraile-Ribot, 2017, In vivo emergence of resistance to novel cephalosporin–β-Lactamase inhibitor combinations through the duplication of amino acid D149 from OXA-2 β-Lactamase (OXA-539) in sequence type 235 Pseudomonas aeruginosa, Antimicrob Agents Chemother, 61, 1, 10.1128/AAC.01117-17 Kaufmann, 1998, Pulsed-field gel electrophoresis, vol. 15, 33 Curran, 2004, Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa, J Clin Microbiol, 42, 5644, 10.1128/JCM.42.12.5644-5649.2004 Cabot, 2014, Pseudomonas aeruginosa ceftolozane–tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC, Antimicrob Agents Chemother, 58, 3091, 10.1128/AAC.02462-13 van Duin, 2016, Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations, Clin Infect Dis, 63, 234, 10.1093/cid/ciw243 Bassetti, 2019, Ceftolozane/tazobactam for the treatment of serious Pseudomonas aeruginosa infections: a multicentre nationwide clinical experience, Int J Antimicrob Agents, 53, 408, 10.1016/j.ijantimicag.2018.11.001 Escolà-Vergé, 2018, Ceftolozane/tazobactam for the treatment of XDR Pseudomonas aeruginosa infections, Infection, 46, 461, 10.1007/s15010-018-1133-5 Cabot, 2012, Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones, Antimicrob Agents Chemother, 56, 6349, 10.1128/AAC.01388-12 MacVane, 2017, Emergence of ceftolozane–tazobactam-resistant Pseudomonas aeruginosa during treatment is mediated by a single AmpC structural mutation, Antimicrob Agents Chemother, 61, 10.1128/AAC.01183-17 Boulant, 2019, A 2.5-year within-patient evolution of Pseudomonas aeruginosa isolates with in vivo acquisition of ceftolozane–tazobactam and ceftazidime–avibactam resistance upon treatment, Antimicrob Agents Chemother, 63, 10.1128/AAC.01637-19 Barnes, 2018, Deciphering the evolution of cephalosporin resistance to ceftolozane tazobactam in Pseudomonas aeruginosa, mBio, 9, 10.1128/mBio.02085-18 Poirel, 2018, Acquisition of extended-spectrum β-lactamase GES-6 leading to resistance to ceftolozane–tazobactam combination in Pseudomonas aeruginosa, Antimicrob Agents Chemother, 63, 10.1128/AAC.01809-18 Khan, 2019, Extensively drug-resistant Pseudomonas aeruginosa ST309 harboring tandem Guiana extended spectrum β-Lactamase enzymes: a newly emerging threat in the United States, Open Forum Infect Dis, 6, 10.1093/ofid/ofz273 Arca-Suárez, 2019, Challenging antimicrobial susceptibility and evolution of resistance (OXA-681) during treatment of a Pseudomonas aeruginosa ST175 clone long-term nosocomial infection, Antimicrob Agents Chemother, 63, 10.1128/AAC.01110-19 Mack, 2019, A standard numbering scheme for class C β-lactamases, Antimicrob Agents Chemother, 10.1128/AAC.01841-19