Characterization of β-glucosidase of Lactobacillus plantarum FSO1 and Candida pelliculosa L18 isolated from traditional fermented green olive
Tóm tắt
Oleuropein, the main bitter phenolic glucoside responsible for green olive bitterness, may be degraded by the β-glucosidase enzyme to release glucose and phenolic compounds. Lactobacillus plantarum FSO1 and Candida pelliculosa L18 strains, isolated from natural fermented green olives, were tested for their β-glucosidase production and activity at different initial pH, NaCl concentrations, and temperature. The results showed that strains produced extracellular and induced β-glucosidase, with a molecular weight of 60 kD. The strains demonstrated their biodegradation capacity of oleuropein, associated with the accumulation of hydroxytyrosol and other phenolic compounds, resulting in antioxidant activity values significantly higher than that of ascorbic acid. The highest production value of β-glucosidase was 0.91 U/ml obtained at pH 5 and pH 6, respectively for L. plantarum FSO1 and C. pelliculosa L18. The increase of NaCl concentration, from 0 to 10% (w/v), inhibited the production of β-glucosidase for both strains. However, the β-glucosidase was activated with an increase of NaCl concentration, with a maximum activity obtained at 8% NaCl (w/v). The enzyme activity was optimal at pH 5 for both strains, while the optimum temperature was 45 °C for L. plantarum FSO1 and 35 °C for C. pelliculosa L18. L. plantarum FSO1 and C. pelliculosa L18 strains showed their ability to produce an extracellular and induced β-glucosidase enzyme with promising traits for application in the biological processing of table olives.
Tài liệu tham khảo
Charoenprasert S, Mitchell A (2012) Factors influencing phenolic compounds in table olives (Olea europaea). J Agric Food Chem 60(29):7081–7095. https://doi.org/10.1021/jf3017699
Rokni Y, Abouloifa H, Bellaouchi R, Gaamouche S, Mchiouer K, Hasnaoui I, Lamzira Z, Ghabbour N, Asehraou A (2017) Technological process of fermented olive. Arab J Chem Environ Res 04:63–91
Limiroli R, Consonni R, Ottolina G, Marsilio V, Bianchi G, Zetta L (1995) 1 H and 13 C NMR characterization of new oleuropein aglycones. J Chem Soc. Perkin Trans 1. https://doi.org/10.1039/P199500015191519-1523, https://doi.org/10.1039/P19950001519
Segovia-Bravo KA, Jarén-Galán M, García-García P, Garrido-Fernández A (2009) Browning reactions in olives: Mechanism and polyphenols involved. Food Chem 114(4):1380–1385. https://doi.org/10.1016/j.foodchem.2008.11.017
Soler-Rivas C, García-Rosado A, Polonia I, Junca-Blanch G, Marín FR, Wichers HJ (2006) Microbiological effects of olive mill waste addition to substrates for Pleurotus pulmonarius cultivation. Int Biodeterior Biodegradation 57(1):37–44. https://doi.org/10.1016/j.ibiod.2005.10.007
Ghabbour N, Rokni Y, Abouloifa H, Bellaouchi R, Chihib N-E, Salah RB, Lamzira Z, Saalaoui E, Asehraou A (2020) In vitro biodegradation of oleuropein by lactobacillus plantarum FSO 175 in stress conditions (pH, NaCl and glucose). J Microbiol Biotechnol Food Sci 9(4):769–773. https://doi.org/10.15414/jmbfs.2020.9.4.769-773
Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(D1):D490–D495. https://doi.org/10.1093/nar/gkt1178
Verdoucq L, Czjzek M, Moriniere J, Bevan DR, Esen A (2003) Mutational and structural analysis of aglycone specificity in maize and sorghum β-glucosidases. J Biol Chem 278(27):25055–25062. https://doi.org/10.1074/jbc.M301978200
Naumoff DG (2011) Hierarchical classification of glycoside hydrolases. Biochemistry 76(6):622–635. https://doi.org/10.1134/S0006297911060022
Sestelo ABF, Poza M, Villa TG (2004) β-Glucosidase activity in a lactobacillus plantarum wine strain. World J Microbiol Biotechnol 20:633. https://doi.org/10.1023/b:wibi.0000043195.80695.17
Abouloifa H, Rokni Y, Bellaouchi R, Hasnaoui I, Gaamouche S, Ghabbour N, Chaoui J, Brasca M, Karboune S, Salah RB (2020) Technological properties of potential probiotic lactobacillus strains isolated from traditional fermenting green olive. J Microbiol Biotechnol Food Sci 9(1):884–889. https://doi.org/10.15414/jmbfs.2020.10.1.22-27
Landete JM, Rodríguez H, Curiel JA, Rivas B d l, de Felipe FL, Muñoz R (2021) Degradation of phenolic compounds found in olive products by Lactobacillus plantarum strains. https://doi.org/10.1016/b978-0-12-819528-4.00028-6133-144 10.1016/b978-0-12-819528-4.00028-6
Rodriguez-Gomez F, Romero-Gil V, Bautista-Gallego J, Garrido-Fernandez A, Arroyo-Lopez FN (2012) Multivariate analysis to discriminate yeast strains with technological applications in table olive processing. World J Microbiol Biotechnol 28(4):1761–1770. https://doi.org/10.1007/s11274-011-0990-1
Erdemir Tıraş ZŞ, Kalkan Yıldırım H (2021) Application of mixed starter culture for table olive production. Grasas Aceites 72(2):e405. https://doi.org/10.3989/gya.0220201
Ghabbour N, Lamzira Z, Thonart P, Cidalia P, Markaoui M, Asehraou A (2011) Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives. Grasas Aceites 62(1):84–89. https://doi.org/10.3989/gya.055510
Ghabbour N, Rokni Y, Lamzira Z, Thonart P, Chihib NE, Peres C, Asehraou A (2016) Controlled fermentation of Moroccan picholine green olives by oleuropein-degrading Lactobacilli strains. Grasas Aceites 67(2):e138. https://doi.org/10.3989/gya.0759152
Rokni Y, Ghabbour N, Chihib N-E, Thonart P, Asehraou A (2015) Physico-chemical and microbiological characterization of the natural fermentation of Moroccan Picholine green olives variety. J Mater Environ Sci 6:1740–1751
Alfano G, Lustrato G, Lima G, Vitullo D, Ranalli G (2011) Characterization of composted olive mill wastes to predict potential plant disease suppressiveness. Biol Control 58(3):199–207. https://doi.org/10.1016/j.biocontrol.2011.05.001
Principi P, Ranalli G, da Borso F, Pin M, Zanardini E, Sorlini C (2003) Microbiological aspects of humid husk composting. J Environ Sci Heal B 38(5):645–661. https://doi.org/10.1081/PFC-120023521
Ahmadova A, Todorov SD, Choiset Y, Rabesona H, Zadi TM, Kuliyev A, de Melo Franco BDG, Chobert J-M, Haertlé T (2013) Evaluation of antimicrobial activity, probiotic properties and safety of wild strain Enterococcus faecium AQ71 isolated from Azerbaijani Motal cheese. Food Control 30(2):631–641. https://doi.org/10.1016/j.foodcont.2012.08.009
Devoyod JJ, Poullain F (1988, 68) The Leuconostocs. Characteristics, their role in dairy technology. Lait (France):249–279. https://doi.org/10.1051/lait:1988317
Pchelintsev NA, Adams PD, Nelson DM (2016) Critical Parameters for Efficient Sonication and Improved Chromatin Immunoprecipitation of High Molecular Weight Proteins. PLoS One 11(1):e0148023. https://doi.org/10.1371/journal.pone.0148023
Laemmli UK (1970) Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0
Wray W, Boulikas T, Wray VP, Hancock R (1981) Silver staining of proteins in polyacrylamide gels. Anal Biochem 118(1):197–203. https://doi.org/10.1016/0003-2697(81)90179-2
Norkrans B (1950) Influence of cellulolytic enzymes from Hymenomycetes on cellulose preparations of different crystallinity. Physiol Plant 3(1):75–87. https://doi.org/10.1111/j.1399-3054.1950.tb07494.x
Sánchez-Moreno C, Larrauri JA, Saura-Calixto F (1998) A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 76(2):270–276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9.
Lamzira Z (2010) Contribution au contrôle du processus de fermentation des olives vertes de table de la variété Picholine marocaine et caractérisation de son profil polyphénolique. PhD Thesis, Université Mohamed Premier, Oujda
Edberg SC, Gam K, Bottenbley CJ, Singer JM (1976) Rapid spot test for the determination of esculin hydrolysis. J Clin Microbiol 4(2):180–184. https://doi.org/10.1128/jcm.4.2.180-184.1976
Gikas E, Papadopoulos N, Tsarbopoulos A (2007) Kinetic Study of the Acidic Hydrolysis of Oleuropein, the Major Bioactive Metabolite of Olive Oil. J Liq Chromatogr Rel Technol 29(4):497–508. https://doi.org/10.1080/10826070500474113
Abriouel H, Benomar N, Cobo A, Caballero N, Fernandez Fuentes MA, Perez-Pulido R, Galvez A (2012) Characterization of lactic acid bacteria from naturally-fermented Manzanilla Alorena green table olives. Food Microbiol 32(2):308–316. https://doi.org/10.1016/j.fm.2012.07.006
Peres CM, Alves M, Hernandez-Mendoza A, Moreira L, Silva S, Bronze MR, Vilas-Boas L, Peres C, Xavier Malcata F (2014) Novel isolates of lactobacilli from fermented Portuguese olive as potential probiotics. LWT - Food Sci Technol 59(1):234–246. https://doi.org/10.1016/j.lwt.2014.03.003
Tofalo R, Perpetuini G, Schirone M, Ciarrocchi A, Fasoli G, Suzzi G, Corsetti A (2014) Lactobacillus pentosus dominates spontaneous fermentation of Italian table olives. LWT - Food Sci Technol 57(2):710–717. https://doi.org/10.1016/j.lwt.2014.01.035
Abouloifa H, Rokni Y, Bellaouchi R, Ghabbour N, Karboune S, Brasca M, Salah RB, Chihib NE, Saalaoui E, Asehraou A (2020) Characterization of probiotic properties of antifungal Lactobacillus strains isolated from traditional fermenting green olives. Probiotics and antimicrobial proteins 12(2):683–696. https://doi.org/10.1007/s12602-019-09543-8
Tofalo R, Perpetuini G, Schirone M, Suzzi G, Corsetti A (2013) Yeast biota associated to naturally fermented table olives from different Italian cultivars. In J Food Microbiol 161(3):203–208. https://doi.org/10.1016/j.ijfoodmicro.2012.12.011
Bonatsou S, Benítez A, Rodríguez-Gómez F, Panagou EZ, Arroyo-López FN (2015) Selection of yeasts with multifunctional features for application as starters in natural black table olive processing. Food Microbiol 46:66–73. https://doi.org/10.1016/j.fm.2014.07.011
Kiai H, Hafidi A (2014) Chemical composition changes in four green olive cultivars during spontaneous fermentation. LWT - Food Sci Technol 57(2):663–670. https://doi.org/10.1016/j.lwt.2014.02.011
Coulon S, Chemardin P, Gueguen Y, Arnaud A, Galzy P (1998) Purification and characterization of an intracellular β-glucosidase from Lactobacillus casei ATCC 393. Appl Biochem Biotechnol 74(2):105–114. https://doi.org/10.1007/BF02787177
Michlmayr H, Schumann C, da Silva NM, Kulbe KD, del Hierro AM (2010) Isolation and basic characterization of a beta-glucosidase from a strain of Lactobacillus brevis isolated from a malolactic starter culture. J Appl Microbiol 108(2):550–559. https://doi.org/10.1111/j.1365-2672.2009.04461.x
Leah R, Kigel J, Svendsen I, Mundy J (1995) Biochemical and molecular characterization of a barley seed beta-glucosidase. The Journal of biological chemistry 270(26):15789–15797. https://doi.org/10.1074/jbc.270.26.15789
Boonclarm D, Sornwatana T, Arthan D, Kongsaeree P, Svasti J (2006) β-Glucosidase Catalyzing Specific Hydrolysis of an Iridoid β-Glucoside from Plumeria obtusa. Acta Biochim Biophys Sin 38(8):563–570. https://doi.org/10.1111/j.1745-7270.2006.00196.x
Esteban-Torres M, Reveron I, Mancheno JM, de Las Rivas B, Munoz R (2013) Characterization of a feruloyl esterase from Lactobacillus plantarum. Appl Environ Microbiol 79(17):5130–5136. https://doi.org/10.1128/AEM.01523-13
Johnson R, Melliou E, Zweigenbaum J, Mitchell AE (2018) Quantitation of oleuropein and related phenolics in cured Spanish-style green, california-style black ripe, and greek-style natural fermentation olives. J Agric Food Chem 66(9):2121–2128. https://doi.org/10.1021/acs.jafc.7b06025
Soni MG, Burdock GA, Christian MS, Bitler CM, Crea R (2006) Safety assessment of aqueous olive pulp extract as an antioxidant or antimicrobial agent in foods. Food Chem Toxicol 44(7):903–915. https://doi.org/10.1016/j.fct.2006.01.008
Hu T, He XW, Jiang JG, Xu XL (2014) Hydroxytyrosol and its potential therapeutic effects. J Agric Food Chem 62(7):1449–1455. https://doi.org/10.1021/jf405820v
Ponomarova O, Gabrielli N, Sévin DC, Mülleder M, Zirngibl K, Bulyha K, Andrejev S, Kafkia E, Typas A, Sauer U, Ralser M, Patil KR (2017) Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Systems 5:345–357.e6. https://doi.org/10.1016/j.cels.2017.09.002
D'Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C (2018) Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep 35(5):455–488. https://doi.org/10.1039/C8NP00009C
Gouripur G, Kaliwal B (2017) Screening and optimization of β -glucosidase producing newly isolated Lactobacillus plantarum strain LSP-24 from colostrum milk. Biocatal Agric Biotechnol 11:89–96. https://doi.org/10.1016/j.bcab.2017.06.007
Saha BC, Bothast RJ (1996) Production, purification, and characterization of a highly glucose-tolerant novel beta-glucosidase from Candida peltata. Appl Environ Microbiol 62(9):3165–3170. https://doi.org/10.1128/aem.62.9.3165-3170.1996
Pandey M, Mishra S (1997) Expression and characterization of Pichia etchellsii β-glucosidase in Escherichia coli. Gene 190(1):45–51. https://doi.org/10.1016/S0378-1119(96)00712-3
Boonclarm D, Svasti J (2002) Screening of thai plants for natural beta-glucosides and beta-glucosidase enzyme. PhD Thesis, Mahidol University, Thaïlande
Yuksekdag Z, Acar BC, Aslim B, Tukenmez U (2018) β-Glucosidase activity and bioconversion of isoflavone glycosides to aglycones by potential probiotic bacteria. Int J Food Prop 20(sup3):S2878–S2886. https://doi.org/10.1080/10942912.2017.1382506
Restuccia C, Muccilli S, Palmeri R, Randazzo CL, Caggia C, Spagna G (2011) An alkaline β-glucosidase isolated from an olive brine strain of Wickerhamomyces anomalus. FEMS Yeast Research 11(6):487–493. https://doi.org/10.1111/j.1567-1364.2011.00738.x
Umezurike GM (1987) The mechanism of action of beta-glucosidase from Botryodiplodia theobromae Pat. Biochem J 241(2):455–462. https://doi.org/10.1042/bj2410455
Dietz K-J, Sauter A, Wichert K, Messdaghi D, Hartung W (2000) Extracellular β-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J Exp Bot 51(346):937–944. https://doi.org/10.1093/jexbot/51.346.937
Bowers EM, Ragland LO, Byers LD (2007) Salt effects on beta-glucosidase: pH-profile narrowing. Biochim Biophys Acta 1774(12):1500–1507. https://doi.org/10.1016/j.bbapap.2007.10.007