Characterization and in vivo biocompatibility analysis of synthetic hydroxyapatite compounds associated with magnetite nanoparticles for a drug delivery system in osteomyelitis treatment

Results in Materials - Tập 5 - Trang 100063 - 2020
Dayana A.C. Ferreira-Ermita1, Fabrício L. Valente1, Emily C. Carlo-Reis1, Fabiana R. Araújo1, Iara M. Ribeiro1, Cristiane C.V. Cintra1, Andréa P.B. Borges1
1Federal University of Viçosa, Viçosa, MG, Brazil

Tài liệu tham khảo

Fournier, 2003, Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility, Biomaterials, 24, 3311, 10.1016/S0142-9612(03)00161-3 Nyska, 2014, Histopathology of biodegradable polymers: challenges in interpretation and the use of a novel compact MRI for biocompatibility evaluation, Polym. Adv. Technol., 25, 461, 10.1002/pat.3238 Y., 2008, A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response, J. Diabetes Sci. Technol., 2, 1003, 10.1177/193229680800200610 ISO document 10993 Borges, 2000, Hidroxiapatita sintética (HAP-91) como substituto ósseo em defeito experimental provocado no terço proximal da tíbia em cão: aspectos à microscopia eletrônica de transmissão, Arq. Bras. Med. Vet. Zootec., 52, 616, 10.1590/S0102-09352000000600011 Vital, 2006, Biocompatibilidade e comportamento de compósitos de hidroxiapatita em falha óssea na ulna de coelhos, Arq. Bras. Med. Vet. Zootec., 58, 175, 10.1590/S0102-09352006000200005 Sepúlveda, 2013, Composite synthetic hydroxyapatite 30%, in two physical states, as dermal filler, Rev. Ceres, 60, 458, 10.1590/S0034-737X2013000400003 Hiromoto, 2015, In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite, Acta Biomater., 11, 520, 10.1016/j.actbio.2014.09.026 Ahmadzadeh, 2017, A biological method for in-situ synthesis of hydroxyapatite-coated magnetite nanoparticles using Enterobacter aerogenes: characterization and acute toxicity assessments, Mater. Sci. Eng. C, 73, 220, 10.1016/j.msec.2016.12.012 Mahmoudia, 2009, Cell toxicity of superparamagnetic iron oxide nanoparticles, J. Colloid Interface Sci., 336, 510, 10.1016/j.jcis.2009.04.046 Watanabe, 2013, Effects of Fe3O4 magnetic nanoparticles on A549 cells, Int. J. Mol. Sci., 14, 15546, 10.3390/ijms140815546 Foroughi, 2016, In situ microemulsion synthesis of hydroxyapatite-MgFe2O4 nanocomposite as a magnetic drug delivery system, Mater. Sci. Eng. C Mater. Biol. Appl., 68, 774, 10.1016/j.msec.2016.07.028 Lai, 2009, The role of bloom index of gelatin on the interaction with retinal pigment epithelial cells, Int. J. Mol. Sci., 10, 3442, 10.3390/ijms10083442 Park, 2001, Platelet interactions with titanium: modulation of platelet activity by surface topography, Biomaterials, 22, 2671, 10.1016/S0142-9612(01)00009-6 Kikuchi, 2005, Platelet interactions with calciumphosphate-coated surfaces, Biomaterials, 26, 5285, 10.1016/j.biomaterials.2005.01.009 Gholipourmalekabadi, 2015, In vitro and in vivo evaluations of three-dimensional hydroxyapatite/silk fibroin nanocomposite scaffolds, Biotechnol. Appl. Biochem., 62, 441, 10.1002/bab.1285 Chow, 2009, Next generation calcium phosphate-based biomaterials, Dent. Mater. J., 28, 1, 10.4012/dmj.28.1 Carlo, 2009, Comparison of in vivo properties of hydroxyapatite polyhydroxybutyrate composites assessed for bone substitution, J. Craniofac. Surg., 20, 853, 10.1097/SCS.0b013e3181a14c30 Baumann, 1994, The acute phase response, Immunol. Today, 15, 74, 10.1016/0167-5699(94)90137-6 Tang, 1998, Mast cells mediate acute inflammatory responses to implanted biomaterials, Proc. Natl. Acad. Sci. U.S.A., 95, 8841, 10.1073/pnas.95.15.8841 Shen, 2001, The effects of surface chemistry and adsorbed proteins on monocyte/macrophage adhesion to chemically modified polystyrene surfaces, J. Biomed. Mater. Res., 57, 336, 10.1002/1097-4636(20011205)57:3<336::AID-JBM1176>3.0.CO;2-E Carlo, 2007, Avaliação do efeito osteoindutor da hidroxiapatita e do biovidro implantados em tecido subcutâneo de cão, Rev. Ceres, 54, 492 Sepúlveda, 2013, Composite synthetic hydroxyapatite 30%, in two physical states, as dermal filler, Rev. Ceres, 60, 458, 10.1590/S0034-737X2013000400003 Amini, 2011, Short-term and long-term effects of orthopedic biodegradable implants, J. Long Term Eff. Med. Implants, 21, 93, 10.1615/JLongTermEffMedImplants.v21.i2.10 Nuss, 2008, Biocompatibility issues with modern implants in bone - a review for clinical orthopedics, Open Orthop. J., 2, 66, 10.2174/1874325000802010066 Abbas, 2012 Day, 2004, Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds, Biomaterials, 25, 5857, 10.1016/j.biomaterials.2004.01.043 Rucker, 2006, Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice, Biomaterials, 27, 5027, 10.1016/j.biomaterials.2006.05.033 Hoffbrand, 2001 Xie, 2012, Application of K/Sr co-doped calcium polyphosphate bioceramic as scaffolds for bone substitutes, J. Mater. Sci. Mater. Med., 23, 1033, 10.1007/s10856-012-4556-z