Characterization and identification of an iron-oxidizing, Leptospirillum-like bacterium, present in the high sulfate leaching solution of a commercial bioleaching plant
Tài liệu tham khảo
Bond, 2000, Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems, Appl. Environ. Microbiol., 66, 4962, 10.1128/AEM.66.11.4962-4971.2000
Bond, 2000, Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site, Appl. Environ. Microbiol., 66, 3842, 10.1128/AEM.66.9.3842-3849.2000
Bustos, 1993, The Sociedad Minera Pudahuel bacterial thin-layer leaching process at Lo Aguirre, FEMS Microbiol. Rev., 11, 231, 10.1111/j.1574-6976.1993.tb00289.x
Csonka, 1989, Physiological and genetic responses of bacteria to osmotic stress, Microbiol. Rev., 53, 121, 10.1128/mr.53.1.121-147.1989
Csonka, 1991, Prokaryotic osmoregulation: Genetics and physiology, Annu. Rev. Microbiol., 45, 569, 10.1146/annurev.mi.45.100191.003033
Edwards, 1999, Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment, Appl. Environ. Microbiol., 65, 3627, 10.1128/AEM.65.8.3627-3632.1999
Espejo, 1998, Page analysis of the heteroduplexes formed between PCR amplified 16S ribosomal RNA genes: Estimation of sequence similarity and rDNA complexity, Microbiology, 144, 1611, 10.1099/00221287-144-6-1611
Espejo, 1987, Growth of Thiobacillus ferrooxidans on elemental sulfur, Appl. Environ. Microbiol., 53, 1907, 10.1128/aem.53.8.1907-1912.1987
Espejo, 1997, Bacterial community in copper sulphide ores inoculated and leached with solution from a commercial-scale copper leaching plant, Appl. Environ. Microbiol., 63, 1344, 10.1128/aem.63.4.1344-1348.1997
Felsenstein, 1989, PHYLIP—phylogeny inference package (version 3.2), Cladistics, 5, 164
Golyshina, 2000, Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea, Int. J. Syst. Evol. Microbiol., 50, 997, 10.1099/00207713-50-3-997
Goebel, 1994, Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments, Appl. Environ. Microbiol., 60, 1614, 10.1128/aem.60.5.1614-1621.1994
Gutell, 1985, Comparative anatomy of 16S-like ribosomal RNA, Prog. Nucleic Acid Res. Mol. Biol., 32, 155, 10.1016/S0079-6603(08)60348-7
Harrison, 1982, Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans, and genomic comparison with Thiobacillus thiooxidans, Arch. Microbiol., 131, 68, 10.1007/BF00451501
Harrison, 1984, The acidophilic thiobacilli and other acidophilic bacteria that share their habitat, Ann. Rev. Microbiol., 38,, 265, 10.1146/annurev.mi.38.100184.001405
Harrison, 1986, Characteristics of Thiobacillus ferrooxidans and other iron-oxidising bacteria, with emphasis on nucleic acid analyses, Biotecnol. Appl. Biochem., 8, 249
Hutchins, 1986, Microorganisms in reclamation of metals, Annu. Rev. Microbiol., 40, 311, 10.1146/annurev.mi.40.100186.001523
Jukes, 1969, 21
Karavaiko, 1988, Thermophilic bacteria of the genus sulfobacillus, 29
Kieft, 1988, Osmoregulation in Thiobacillus ferrooxidans: Stimulation of iron oxidation by proline and betaine under salt stress, Curr. Microbiol., 17, 255, 10.1007/BF01571324
Kovrov, 1978, Dependence of the rate of ferrous oxide oxidation by a Thiobacillus ferrooxidans culture on its concentration, Mikrobiologiia, 47, 400
Lane, 1991, 115
Lane, 1992, Evolutionary relationships among sulfur- and iron-oxidising eubacteria, J. Bacteriol., 174, 269, 10.1128/jb.174.1.269-278.1992
McLaggan, 1990, Chloride transport pathways and their bioenergetic implications in the obligate acidophilic Bacillus coagulans, J. Bacteriol., 172, 1485, 10.1128/jb.172.3.1485-1490.1990
Montealegre, 1991
Montealegre, 1995, 781
Pizarro, 1996, Bacterial population in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation, Appl. Environ. Microbiol., 62, 1323, 10.1128/aem.62.4.1323-1328.1996
Rawlings, 1999, Reasons why “Leptospirillum”-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidising bacteria in many commercial processes for the biooxidation of pyrite and related ores, Microbiology, 145, 5, 10.1099/13500872-145-1-5
Sand, 1992, Evaluation of Leptospirillum ferrooxidans for leaching, Appl. Environ. Microbiol., 58, 85, 10.1128/aem.58.1.85-92.1992
Schrenk, 1998, Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: Implications for generation of acid mine drainage, Science, 279, 1519, 10.1126/science.279.5356.1519
van Scherpenzeel, 1998, Kinetics of ferrous iron oxidation by Leptospirillum bacteria in continuous cultures, Biotechnol. Progr., 14, 425, 10.1021/bp980016h
Vásquez, 1997, Chemolithotrophic bacteria in copper ores leached at high sulphuric acid concentration, Appl. Environ. Microbiol., 63, 332, 10.1128/aem.63.1.332-334.1997
Ventosa, 1998, Biology of moderately halophilic aerobic bacteria, Microbiol. Mol. Biol. Rev., 62, 504, 10.1128/MMBR.62.2.504-544.1998
Vreeeland, 1987, Mechanisms of halotolerance in microorganisms, Crit. Rev. Microbiol., 14, 311, 10.3109/10408418709104443
Woese, 1983, Detailed analysis of the higher-order structure of the 16S-like ribosomal ribonucleic acids, Microbiol. Rev., 47, 621, 10.1128/mr.47.4.621-669.1983