Đặc điểm và Giải trình tự Toàn bộ Gen của AR23, một Động lực Bacillus thuringiensis Có Độc Tính Cao Được Isolate Từ Đất Liban

Current Microbiology - Tập 76 - Trang 1503-1511 - 2019
Nancy Fayad1,2, Rafael Patiño-Navarrete3, Zakaria Kambris4, Mandy Antoun1,5,6, Mike Osta4, Joel Chopineau5,6, Jacques Mahillon2, Laure El Chamy7, Vincent Sanchis3, Mireille Kallassy Awad1
1Laboratory of Biodiversity and Functional Genomics, Faculty of Science, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
2Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
3Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
4Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
5Institut Charles Gerhardt de Montpellier (ICGM), CNRS UMR 5253/UM/ENSCM Université de Montpellier Campus Triolet, Montpellier Cedex 5, France
6Université de Nîmes, Nîmes, France
7Génétique de La Drosophile Et Virulence Microbienne (GDVM), Faculty of Science, Université Saint-Joseph de Beyrouth, Beirut, Lebanon

Tóm tắt

Nhu cầu về các phương pháp kiểm soát sâu bệnh và côn trùng bền vững, thân thiện với môi trường đang gia tăng trên toàn cầu. Từ đó, sự quan tâm đến Bacillus thuringiensis, một loại vi khuẩn gây bệnh côn trùng có khả năng thay thế thuốc trừ sâu hóa học, ngày càng lớn. Tuy nhiên, khả năng côn trùng phát triển khả năng kháng lại một chủng cụ thể có thể ảnh hưởng đến việc sử dụng nó, và cần xác định các chủng mới của loài này như những chế phẩm sinh học tiềm năng. B. thuringiensis sv. israelensis là một trong những serovar thành công nhất, được thương mại hóa rộng rãi vì hoạt động của nó đối với ấu trùng ruồi đen và muỗi. Trong nghiên cứu này, chúng tôi đã tách chiết, đặc trưng và giải trình tự một loại B. thuringiensis sv. israelensis mới từ Liban, chủng AR23. So với chủng tham chiếu thương mại AM65-52 (Vectobac®, Sumitomo), AR23 cho thấy hoạt động tăng cường đối với nhiều loài muỗi khác nhau. Phân tích genom đã chỉ ra rằng chủng này, so với AM65-52, sở hữu một nội dung plasmid đơn giản hơn và một gen cry4Ba chức năng bổ sung, rất có khả năng là nguyên nhân chính giải thích cho hiệu quả tăng cường của chủng này trong việc tiêu diệt ấu trùng muỗi.

Từ khóa

#Bacillus thuringiensis #sâu bệnh #côn trùng #chế phẩm sinh học #ấu trùng muỗi

Tài liệu tham khảo

Regis L, Silva-Filha MH, Nielsen-LeRoux C, Charles J-F (2001) Bacteriological larvicides of dipteran disease vectors. Trends Parasitol 17:377–380. https://doi.org/10.1016/S1471-4922(01)01953-5 Schnepf E, Crickmore N, Rie JVAN et al (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806 Van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101:1–16. https://doi.org/10.1016/j.jip.2009.02.009 Van Frankenhuyzen K (2013) Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. J Invertebr Pathol 114:76–85. https://doi.org/10.1016/j.jip.2013.05.010 Palma L, Muñoz D, Berry C et al (2014) Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins 6:3296–3325. https://doi.org/10.3390/toxins6123296 Glare TR, O’Callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. Wiley, New York, pp 2–80 Roh JY, Choi JY, Li MS et al (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17:547–559 De Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17:193–199. https://doi.org/10.1016/S0168-9525(01)02237-5 Gammon K, Jones GW, Hope SJ et al (2006) Conjugal transfer of a toxin-coding megaplasmid from Bacillus thuringiensis subsp. israelensis to mosquitocidal strains of Bacillus thuringiensis. Appl Environ Microbiol 72:1766–1770. https://doi.org/10.1128/AEM.72.3.1766 Leonard C, Chene Y, Mahillon J (1997) Diversity and differential distribution of IS231, IS232 and IS240 among Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides. Microbiology 143:2537–2547 Rang J, He H, Wang T et al (2015) Comparative analysis of genomics and proteomics in Bacillus thuringiensis 4.0718. PLoS ONE 10:e0119065. https://doi.org/10.1371/journal.pone.0119065 Berry C, O’Neil S, Ben-dov E et al (2002) Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 68:5082–5095. https://doi.org/10.1128/AEM.68.10.5082 Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435 Lacey LA (2007) Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc 23:133–163. https://doi.org/10.2987/8756-971X(2007)23[133:BTSIAB]2.0.CO;2 Pérez C, Fernandez LE, Sun J et al (2005) Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc Natl Acad Sci USA 102:18303–18308. https://doi.org/10.1073/pnas.0505494102 Poncet S, Delécluse A, Klier A, Rapoport G (1995) Evaluation of synergistic interactions between the CryIVA, CryIVB and CryIVD toxic components of Bacillus thuringiensis subsp. israelensis crystals. J Invertebr Pathol 66:131–135 Wirth MC, Georghiou GP, Federici BA (1997) CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. Proc Natl Acad Sci USA 94(10536):10540. https://doi.org/10.1073/pnas.94.20.10536 Wirth MC, Delécluse A, Federici BA, Walton WE (1998) Variable cross-resistance to Cry11B from Bacillus thuringiensis subsp. jegathesan in Culex quinquefasciatus (Diptera: Culicidae) resistant to single or multiple toxins of Bacillus thuringienisis subsp. israelensis. Appl Environ Microbiol 64:4174–4179. https://doi.org/10.1128/AEM.67.4.1956-1958.2001 Brar SK, Verma M, Tyagi RD, Valéro JR (2006) Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem 41:323–342 He J, Wang J, Yin W et al (2011) Complete genome sequence of Bacillus thuringiensis subsp chinensis strain CT-43. J Bacteriol 193:3407–3408. https://doi.org/10.1128/JB.05085-11 Doggett NA, Stubben CJ, Chertkov O et al (2013) Complete genome sequence of Bacillus thuringiensis serovar israelensis strain HD-789. Genome Announc 1:1–2. https://doi.org/10.1128/genomeA.01023-13.Copyright Liu G, Song L, Shu C et al (2013) Complete genome sequence of Bacillus thuringiensis subsp. kurstaki strain HD73. Genome Announc 1:2–3. https://doi.org/10.1128/genomeA.00080-13.Copyright Murawska E, Fiedoruk K, Bideshi DK, Swiecicka I (2013) Complete genome sequence of Bacillus thuringiensis subsp. thuringiensis strain IS5056, an isolate highly toxic to Trichoplusia ni. Genome Announc 1:e0010813. https://doi.org/10.1128/genomeA.00108-13 Johnson SL, Daligault HE, Davenport KW et al (2015) Complete genome sequences for 35 biothreat assay-relevant Bacillus species. Genome Announc 3(2):e00151. https://doi.org/10.1128/genomeA.00151-15 Bolotin A, Gillis A, Sanchis V et al (2017) Comparative genomics of extrachromosomal elements in Bacillus thuringiensis subsp. israelensis. Res Microbiol 168:331–344. https://doi.org/10.1016/j.resmic.2016.10.008 Travers RS, Martin PAW, Reichelderfer CF (1987) Selective process for efficient isolation of soil Bacillus spp. Appl Environ Microbiol 53:1263–1266 El Khoury M, Azzouz H, Chavanieu A et al (2014) Isolation and characterization of a new Bacillus thuringiensis strain Lip harboring a new cry1Aa gene highly toxic to Ephestia kuehniella (Lepidoptera: Pyralidae) larvae. Arch Microbiol 196:435–445 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379 Thomas WE, Ellar DJ (1983) Mechanism of action of Bacillus thuringiensis var israelensis insecticidal δ-endotoxin. FEBS Lett 154:362–368. https://doi.org/10.1016/0014-5793(83)80183-5 Bertani G (1951) A method for detection of mutations, using streptomycin dependence in Escherichia coli. Genetics 36:598 Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. https://doi.org/10.1093/bioinformatics/btr026 Zerbino DR, Birney E (2008) Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. https://doi.org/10.1101/gr.074492.107 Boetzer M, Henkel CV, Jansen HJ et al (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27:578–579. https://doi.org/10.1093/bioinformatics/btq683 Darling AE, Mau B, Perna NT (2010) Progressivemauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5(6):e11147. https://doi.org/10.1371/journal.pone.0011147 Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389 Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324 Mckenna A, Hanna M, Banks E et al (2009) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. https://doi.org/10.1101/gr.107524.110.20 Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153 Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA alignments. Bioinformatics 25:1335–1337. https://doi.org/10.1093/bioinformatics/btp157 Nawrocki EP, Burge SW, Bateman A et al (2015) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43:D130–D137. https://doi.org/10.1093/nar/gku1063 Varani AM, Siguier P, Gourbeyre E et al (2011) ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol 12:R30. https://doi.org/10.1186/gb-2011-12-3-r30 Crickmore N, Zeigler DR, Schnepf E, van Rie J, Lereclus D, Baum J, Bravo A, Dean DH (1998) Bacillus thuringiensis toxin nomenclature. Microbiol Mol Biol Rev 62:807–813 Böhm M-E, Huptas C, Krey VM, Scherer S (2015) Massive horizontal gene transfer, strictly vertical inheritance and ancient duplications differentially shape the evolution of Bacillus cereus enterotoxin operons hbl, cytK and nhe. BMC Evol Biol 15:246. https://doi.org/10.1186/s12862-015-0529-4 Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490. https://doi.org/10.1371/journal.pone.0009490 Treangen TJ, Ondov BD, Koren S, Phillippy AM (2014) The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol 15:524. https://doi.org/10.1186/s13059-014-0524-x Croucher NJ, Page AJ, Connor TR et al (2015) Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 43:e15. https://doi.org/10.1093/nar/gku1196 Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463. https://doi.org/10.1093/bioinformatics/bti191 Mahmood F (1998) Laboratory bioassay to compare susceptibilities of Aedes aegypti and Anopheles albimanus to Bacillus thuringiensis var. israelensis as affected by their feeding rates. J Am Mosq Control Assoc 14:69–71 Crickmore N, Bone EJ, Williams JA, Ellar DJ (1995) Contribution of the individual components of the δ-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiol Lett 131:249–254. https://doi.org/10.1016/0378-1097(95)00264-6 Zghal RZ, Tounsi S, Jaoua S (2006) Characterization of a cry4Ba-type gene of Bacillus thuringiensis israelensis and evidence of the synergistic larvicidal activity of its encoded protein with Cry2A delta-endotoxin of B. thuringiensis kurstaki on Culex pipiens (common house mosquito). Biotechnol Appl Biochem 44:19–25. https://doi.org/10.1042/BA20050134 Gillis A, Fayad N, Makart L et al (2018) Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiol Rev 42:829–856. https://doi.org/10.1093/femsre/fuy034 Makart L, Gillis A, Mahillon J (2015) PXO16 from Bacillus thuringiensis serovar israelensis: almost 350 kb of terra incognita. Plasmid 80:8–15. https://doi.org/10.1016/j.plasmid.2015.03.002 Gillis A, Guo S, Bolotin A et al (2017) Detection of the cryptic prophage-like molecule pBtic235 in Bacillus thuringiensis subsp. israelensis. Res Microbiol 168:319–330. https://doi.org/10.1016/j.resmic.2016.10.004 Makart L, Gillis A, Hinnekens P, Mahillon J (2018) A novel T4SS-mediated DNA transfer used by pXO16, a conjugative plasmid from Bacillus thuringiensis serovar israelensis. Environ Microbiol 20:1550–1561. https://doi.org/10.1111/1462-2920.14084 San Millan A, Toll-Riera M, Qi Q et al (2018) Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. ISME J. https://doi.org/10.1038/s41396-018-0224-8