Characterization and Applications of Nanoparticles Modified in-Flight with Silica or Silica-Organic Coatings
Tóm tắt
Nanoparticles are coated in-flight with a plasma-enhanced chemical vapor deposition (PECVD) process at ambient or elevated temperatures (up to 300 °C). Two silicon precursors, tetraethyl orthosilicate (TEOS) and hexamethyldisiloxane (HMDSO), are used to produce inorganic silica or silica-organic shells on Pt, Au and TiO2 particles. The morphology of the coated particles is examined with transmission electron microscopy (TEM) and the chemical composition is studied with Fourier-transform infrared spectroscopy (FTIR), Energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). It is found that both the precursor and certain core materials have an influence on the coating composition, while other parameters, such as the precursor concentration, aerosol residence time and temperature, influence the morphology, but hardly the chemical composition. The coated particles are used to demonstrate simple applications, such as the modification of the surface wettability of powders and the improvement or hampering of the photocatalytic activity of titania particles.
Từ khóa
Tài liệu tham khảo
Paria, 2012, Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications, Chem. Rev., 112, 2373, 10.1021/cr100449n
Egerton, 1998, The Modification of Fine Powders by Inorganic Coatings, KONA Powder Part. J., 16, 46, 10.14356/kona.1998008
King, 2008, Passivation of pigment-grade TiO2 particles by nanothick atomic layer deposited SiO2 films, Nanotechnology, 19, 25, 10.1088/0957-4484/19/25/255604
Croissant, 2018, Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications, Adv. Healthc. Mater., 7, 1700831, 10.1002/adhm.201700831
Kruis, 1998, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—A review, J. Aerosol Sci., 29, 511, 10.1016/S0021-8502(97)10032-5
Teleki, 2008, In Situ Coating of Flame-Made TiO2 Particles with Nanothin SiO2 Films, Langmuir, 24, 12553, 10.1021/la801630z
Qi, 2011, Thermostable photocatalytically active TiO2 anatase nanoparticles, J. Nanoparticle Res., 13, 1325, 10.1007/s11051-010-0211-0
Powell, 1997, Gas-phase coating of TiO2 with SiO2 in a continuous flow hot-wall aerosol reactor, J. Mater. Res., 12, 552, 10.1557/JMR.1997.0079
Kogelschatz, 2003, Dielectric-barrier discharges: Their history, discharge physics, and industrial applications, Plasma Chem. Plasma Process., 23, 1, 10.1023/A:1022470901385
Vons, 2006, Nanoparticle production using atmospheric pressure cold plasma, J. Nanoparticle Res., 8, 721, 10.1007/s11051-006-9133-2
Nessim, 2009, In-flight coating of nanoparticles in atmospheric-pressure DBD torch plasmas, Eur. Phys. J. Appl. Phys., 47, 22819, 10.1051/epjap/2009076
Post, P., Jidenko, N., Weber, A.P., and Borra, J.-P. (2016). Post-Plasma SiOx Coatings of Metal and Metal Oxide Nanoparticles for Enhanced Thermal Stability and Tunable Photoactivity Applications. Nanomaterials, 6.
Post, 2018, Beschichtung von gasgetragenen Nanopartikeln mit SiO2 mithilfe eines plasma-unterstützten CVD-Prozesses bei Umgebungsbedingungen, Chem. Ing. Tech., 90, 443, 10.1002/cite.201700109
Adachi, 1993, Particle Generation and Film Formation in an Atmospheric-Pressure Chemical Vapor Deposition Reactor Using the Tetraethylorthosilicate (TEOS)/He, TEOS/O2/He, and TEOS/O3/He Systems, Jpn. J. Appl. Phys., 32, L748, 10.1143/JJAP.32.L748
Romet, 2001, Modeling of silicon dioxide chemical vapor deposition from tetraethoxysilane and ozone, J. Electrochem. Soc., 148, G82, 10.1149/1.1342186
Tabrizi, 2009, Generation of nanoparticles by spark discharge, J. Nanoparticle Res., 11, 315, 10.1007/s11051-008-9407-y
(2018, July 13). Evonik Industries AEROXIDE, AERODISP and AEROPERL Titanium Dioxide as Photocatalyst. Available online: http://www.aerosil.com/sites/lists/RE/DocumentsSI/TI-1243-Titanium-Dioxide-as-Photocatalyst-EN.pdf.
Krischok, 2001, H2O interaction with bare and Li-precovered TiO2: Studies with electron spectroscopies (MIES and UPS (HeI and II)), Surf. Sci., 495, 8, 10.1016/S0039-6028(01)01570-9
Klarhöfer, L., Roos, B., Viöl, W., Höfft, O., Dieckhoff, S., Kempter, V., and Maus-Friedrichs, W. (2008). Valence band spectroscopy on lignin. Holzforschung, 62.
Heinlin, 2011, Plasma applications in medicine with a special focus on dermatology: Plasma medicine, J. Eur. Acad. Dermatol. Venereol., 25, 1, 10.1111/j.1468-3083.2010.03702.x
Shirley, 1972, High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Phys. Rev. B, 5, 4709, 10.1103/PhysRevB.5.4709
Scofield, 1976, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, J. Electron Spectrosc. Relat. Phenom., 8, 129, 10.1016/0368-2048(76)80015-1
Yeh, 1985, Atomic subshell photoionization cross sections and asymmetry parameters: 1 ⩽ Z. ⩽ 103, At. Data Nucl. Data Tables, 32, 1, 10.1016/0092-640X(85)90016-6
Bewig, 1965, The wetting of gold and platinum by water, J. Phys. Chem., 69, 4238, 10.1021/j100782a029
Moravej, 2005, Atmospheric Plasma Deposition of Coatings Using a Capacitive Discharge Source, Chem. Vap. Depos., 11, 469, 10.1002/cvde.200400022
Klapiszewski, 2017, Preparation and characterization of novel TiO2/lignin and TiO2-SiO2/lignin hybrids and their use as functional biosorbents for Pb (II), Chem. Eng. J., 314, 169, 10.1016/j.cej.2016.12.114
Himpsel, 1988, Microscopic structure of the SiO2/Si interface, Phys. Rev. B, 38, 6084, 10.1103/PhysRevB.38.6084
Hollinger, 1984, Probing the transition layer at the SiO2-Si interface using core level photoemission, Appl. Phys. Lett., 44, 93, 10.1063/1.94565
Cerofolini, 2002, Accounting for anomalous oxidation states of silicon at the Si/SiO2 interface, Surf. Interface Anal., 33, 583, 10.1002/sia.1424
McCafferty, 1998, Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method, Surf. Interface Anal., 26, 549, 10.1002/(SICI)1096-9918(199807)26:8<549::AID-SIA396>3.0.CO;2-Q
Pantano, 2004, Mechanisms for Silanol Formation on Amorphous Silica Fracture Surfaces, J. Am. Ceram. Soc., 82, 1289
Gustus, 2014, Decomposition of amorphous Si2C by thermal annealing, Thin Solid Films, 552, 232, 10.1016/j.tsf.2013.12.033
Bebensee, 2008, The adsorption of oxygen and water on Ca and CaO films studied with MIES, UPS and XPS, Surf. Sci., 602, 1622, 10.1016/j.susc.2008.02.011
Barr, 1983, An XPS study of Si as it occurs in adsorbents, catalysts, and thin films, Appl. Surf. Sci., 15, 1, 10.1016/0378-5963(83)90003-X
Anwar, 1990, An XPS study of amorphous MoO3/SiO films deposited by co-evaporation, J. Mater. Sci., 25, 1784, 10.1007/BF01045385
Dahle, 2013, Silicon Dioxide Coating of Titanium Dioxide Nanoparticles from Dielectric Barrier Discharge in a Gaseous Mixture of Silane and Nitrogen, Plasma Chem. Plasma Process., 33, 839, 10.1007/s11090-013-9472-6
Cheung, 2007, N incorporation and electronic structure in N-doped TiO2(110) rutile, Surf. Sci., 601, 1754, 10.1016/j.susc.2007.01.051
Kaufmann, E.N. (2012). Common Concepts in Materials Characterization, Introduction. Characterization of Materials, John Wiley & Sons, Inc.
Chinh, 2018, XPS Spectra Analysis of Ti2+, Ti3+ Ions and Dye Photodegradation Evaluation of Titania-Silica Mixed Oxide Nanoparticles, J. Electron. Mater., 47, 2215, 10.1007/s11664-017-6036-1
Fanelli, 2010, Ar/HMDSO/O2 Fed Atmospheric Pressure DBDs: Thin Film Deposition and GC-MS Investigation of By-Products, Plasma Process. Polym., 7, 535, 10.1002/ppap.200900159
Ramqvist, 1969, Charge transfer in transition metal carbides and related compounds studied by ESCA, J. Phys. Chem. Solids, 30, 1835, 10.1016/0022-3697(69)90252-2
Ichihara, 1998, 1/f noise in a-Si1–xCx: H thin films as novel thermistor materials for micro-machined IR sensors, J. Non. Cryst. Solids, 227–230, 1345, 10.1016/S0022-3093(98)00312-3
Alexander, 1997, Mass spectral investigation of the radio-frequency plasma deposition of Hexamethyldisiloxane, J. Phys. Chem. B, 101, 3614, 10.1021/jp970663b
Reuter, 2013, Insight into the Reaction Scheme of SiO2 Film Deposition at Atmospheric Pressure: Insight into the Reaction Scheme of SiO2 Film Deposition, Plasma Process. Polym., 10, 1061, 10.1002/ppap.201300059
Alexander, 1996, An X-ray photoelectron spectroscopic investigation into the chemical structure of deposits formed from hexamethyldisiloxane/ oxygen plasmas, J. Mater. Sci., 31, 1879, 10.1007/BF00372203
Shukla, 2001, An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells, J. Electroanal. Chem., 504, 111, 10.1016/S0022-0728(01)00421-1
Kashiwagi, 1991, Hybrid Films Formed from Hexamethyldisiloxane and SiO by Plasma Process, Jpn. J. Appl. Phys., 30, 1803, 10.1143/JJAP.30.1803
Lee, 2013, TiO2 photocatalyst for water treatment applications, J. Ind. Eng. Chem., 19, 1761, 10.1016/j.jiec.2013.07.012
Nakata, 2012, TiO2 photocatalysis: Design and applications, J. Photochem. Photobiol. C Photochem. Rev., 13, 169, 10.1016/j.jphotochemrev.2012.06.001
Hu, 2012, Preparation of SiO2-Coated TiO2 Composite Materials with Enhanced Photocatalytic Activity Under UV Light, Bull. Korean Chem. Soc., 33, 1895, 10.5012/bkcs.2012.33.6.1895
Gholami, 2015, Photocatalytic degradation of methylene blue on TiO2@SiO2 core/shell nanoparticles: Synthesis and characterization, J. Mater. Sci. Mater. Electron., 26, 6170, 10.1007/s10854-015-3198-6
Minero, 1992, Role of adsorption in photocatalyzed reactions of organic molecules in aqueous titania suspensions, Langmuir, 8, 481, 10.1021/la00038a029
Nussbaum, 2012, Ultra-thin SiO2 layers on TiO2: Improved photocatalysis by enhancing products’ desorption, Phys. Chem. Chem. Phys., 14, 3392, 10.1039/c2cp23202b
Kim, 2009, Photocatalytic activity of a surface-modified anatase and rutile titania nanoparticle mixture, J. Colloid Interface Sci., 338, 304, 10.1016/j.jcis.2009.06.047