Characteristics of two mesoscale convective systems (MCSs) over the Greater Jakarta: case of heavy rainfall period 15–18 January 2013
Tóm tắt
Từ khóa
Tài liệu tham khảo
Atlas R, Hoffman RN, Ardizzone J et al (2011) A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Am Meteorol Soc 92:157–174. https://doi.org/10.1175/2010BAMS2946.1
Chen T-C, Tsay J-D, Matsumoto J, Alpert J (2017) Forecast advisory for a cold-season heavy rainfall/flood event that developed from multiple interactions of the cold-surge vortex with cold-surge flows in the South China Sea. Weather Forecast 32:797–819. https://doi.org/10.1175/WAF-D-16-0148.1
Choi HY, Ha JH, Lee DK, Kuo YH (2011) Analysis and simulation of mesoscale convective systems accompanying heavy rainfall: the goyang case. Asia Pacific J Atmos Sci 47:265–279. https://doi.org/10.1007/s13143-011-0015-x
Doswell CA, Brooks HE, Maddox RA (1996) Flash flood forecasting: an ingredients-based methodology. Weather Forecast 11:560–581. https://doi.org/10.1175/1520-0434(1996)011%3c0560:FFFAIB%3e2.0.CO;2
Hamada A, Nishi N (2010) Development of a cloud-top height estimation method by geostationary satellite split-window measurements trained with CloudSat Data. J Appl Meteorol Climatol 49:2035–2049. https://doi.org/10.1175/2010JAMC2287.1
Harada Y, Kamahori H, Kobayashi C et al (2016) The JRA-55 Reanalysis: representation of atmospheric circulation and climate variability. J Meteorol Soc Japan 94:269–302. https://doi.org/10.2151/jmsj.2016-015
Hattori M, Mori S, Matsumoto J (2011) The cross-equatorial northerly surge over the maritime continent and its relationship to precipitation patterns. J Meteorol Soc Japan 89A:27–47. https://doi.org/10.2151/jmsj.2011-A02
Hidayat R, Kizu S (2010) Influence of the Madden–Julian Oscillation on Indonesian rainfall variability in austral summer. Int J Climatol 30:1816–1825. https://doi.org/10.1002/joc.2005
Houze RAJ (2014) Cloud Dynamics, Second Edi. Academic Press, Amsterdam
Houze RAJ, Geotis SG, Marks FD Jr, West AK (1981) Winter monsoon convection in the vicinity of North Borneo. Part 1: structure and time variation of the clouds and precipitation. Mon Weather Rev 109:1595–1614
Houze RAJ, Smull BF, Dodge P (1990) Mesoscale organization of springtime rainstorms in Oklahoma. Mon Weather Rev 118:613–654
Jeong J-H, Lee D-I, Wang C-C, Han I-S (2016) Characteristics of mesoscale-convective-system-produced extreme rainfall over southeastern South Korea: 7 July 2009. Nat Hazards Earth Syst Sci 16:927–939. https://doi.org/10.5194/nhess-16-927-2016
Jirak IL, Cotton WR, McAnelly RL (2003) Satellite and Radar survey of mesoscale convective system development. Mon Weather Rev 131:2428–2449. https://doi.org/10.1175/1520-0493(2003)131%3c2428:SARSOM%3e2.0.CO;2
Johnson RH, Kriete DC (1982) Thermodynamic and circulation characteristics of winter monsoon tropical mesoscale convection. Mon Weather Rev 110:1898–1911
Johnson RH, Priegnitz DL (1981) Winter monsoon convection in the vicinity of north Borneo. Part 2: effects on large-scale fields. Mon Weather Rev 109:1615–1628
Junker NW, Schneider RS, Fauver SL (1999) A study of heavy rainfall events during the Great Midwest Flood of 1993. Weather Forecast 14:701–712
Kawashima M, Fujiyoshi Y, Ohi M et al (2011) Case study of an intense wind event associated with a mesoscale convective system in west Sumatera during the HARIMAU2006 campaign. J Meteorol Soc Japan 89A:239–257. https://doi.org/10.2151/jmsj.2011-A15
Kobayashi S, Ota Y, Harada Y et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Japan 93:5–48
Love G (1985) Cross-equatorial interactions during tropical cyclogenesis. Mon Weather Rev 113:1499–1509
Maddox RA (1980) Mesoscale convective complexes. Bull Am Meteorol Soc 61:1374–1387. https://doi.org/10.1175/1520-0477(1980)061%3c1374:MCC%3e2.0.CO;2
Mathon V, Laurent H, Lebel T (2002) Mesoscale convective system rainfall in the Sahel. J Appl Meteorol 41:1081–1092. https://doi.org/10.1175/1520-0450(2002)041%3c1081:MCSRIT%3e2.0.CO;2
Matsumoto J, Wang B, Li J, et al (2017) An overview of the Asian monsoon years 2007–2012 (AMY) and multi-scale interactions in the extreme rainfall events over the Indonesian Maritime Continent. In: Chih-Pei Chang, Kuo H-C, Lau N-C, et al. (eds) The global monsoon system: research and forecast, 3rd Edition. World Scientific Publishing Co., pp 365–385
Mohr KI, Zipser EJ (1996) Mesoscale convective systems defined by their 85-GHz ice scattering signature: size and intensity comparison over tropical oceans and continents. Mon Weather Rev 124:2417–2437
Mori S, Hamada JI, Hattori M et al (2018) Meridional March of diurnal rainfall over Jakarta, Indonesia, observed with a C-band Doppler radar: an overview of the HARIMAU2010 campaign. Prog Earth Planet Sci 5:1–23. https://doi.org/10.1186/s40645-018-0202-9
Nuryanto DE, Aldrian E, Pawitan H, Hidayat R (2017a) Application of graph-theory based algorithm for identifying convective complex systems over greater Jakarta basins. IOP Conf Ser Earth Environ Sci 58:012002. https://doi.org/10.1088/1755-1315/58/1/012002
Nuryanto DE, Pawitan H, Hidayat R, Aldrian E (2017b) Propagation of convective complex systems triggering potential flooding rainfall of Greater Jakarta using satellite data. IOP Conf Series Earth Environ Sci 54:012028. https://doi.org/10.1088/1755-1315/54/1/012028
Nuryanto DE, Pawitan H, Hidayat R, Aldrian E (2018) Kinematic and thermodynamic structures of mesoscale convective systems during heavy rainfall in greater Jakarta. Makara J Sci 22:127–136. https://doi.org/10.7454/mss.v22i3.8291
Putri NS, Hayasaka T, Whitehall KD (2017) The properties of mesoscale convective systems in Indonesia detected using the Grab ‘Em Tag ‘Em Graph ‘Em (GTG) algorithm. J Meteorol Soc Japan 95:391–409. https://doi.org/10.2151/jmsj.2017-026
Putri NS, Iwabuchi H, Hayasaka T (2018) Evolution of mesoscale convective system properties as derived from Himawari-8 high resolution data analyses. J Meteorol Soc Japan. https://doi.org/10.2151/jmsj.2018-020
Sakurai N, Murata F, Yamanaka MD et al (2005) Diurnal cycle of cloud system migration over Sumatera Island. J Meteorol Soc Japan 83:835–850. https://doi.org/10.2151/jmsj.83.835
Siswanto S, van Oldenborgh GJ, van der Schrier G et al (2015) Trend in high-daily precipitation events in Jakarta and the flooding of January 2014. Bull Am Meteorol Soc 96:131–135. https://doi.org/10.1175/BAMS-D-15-00128.1
Siswanto S, van Oldenborgh J, van der Schrier G et al (2016) Temperature, extreme precipitation, and diurnal rainfall changes in the urbanized Jakarta city during the past 130 years. Int J Climatol 36:3207–3225. https://doi.org/10.1002/joc.4548
Trilaksono NJ, Otsuka S, Yoden S (2011) Dependence of model-simulated heavy rainfall on the horizontal resolution during the Jakarta flood event in January–February 2007. Sola 7:193–196
Trilaksono NJ, Otsuka S, Yoden S (2012) A time-lagged ensemble simulation on the modulation of precipitation over west Java in January–February 2007. Mon Weather Rev 140:601–616. https://doi.org/10.1175/MWR-D-11-00094.1
Virts KS, Houze RAJ (2015) Variation of lightning and convective rain fraction in mesoscale convective systems of the MJO. J Atmos Sci 72:1932–1944. https://doi.org/10.1175/JAS-D-14-0201.1
Whitehall K, Mattmann CA, Jenkins G et al (2015) Exploring a graph theory based algorithm for automated identification and characterization of large mesoscale convective systems in satellite datasets. Earth Sci Informatics 8:663–675. https://doi.org/10.1007/s12145-014-0181-3
Wu P, Hara M, Fudeyasu H et al (2007) The Impact of trans-equatorial monsoon flow on the formation of repeated torrential rains over Java Island. Sola 3:93–96. https://doi.org/10.2151/sola.2007-024
Wu P, Arbain AA, Mori S et al (2013) The effects of an active phase of the Madden–Julian oscillation on the extreme precipitation event over western Java Island in January 2013. Sola 9:79–83. https://doi.org/10.2151/sola.2013-018
Yuan J, Houze RAJ (2010) Global variability of mesoscale convective system anvil structure from A-train satellite data. J Clim 23:5864–5888. https://doi.org/10.1175/2010JCLI3671.1