Characteristics of silicon microdroplets in coatings deposited by vacuum arc evaporation

Polymer Science, Series D - Tập 9 Số 2 - Trang 238-242 - 2016
Д. В. Духопельников1, Д. В. Кириллов1, Vyacheslav Bulychev1
1Bauman Moscow State Technical University, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

N. N. Gerasimenko and Yu. N. Parkhomenko, Silicon as a Nanoelectronics Material (Tekhnosfera, Moscow, 2007) [in Russian].

M. S. Laranjeira, A. Carvalho, A. Pelaez-Vargas, et al., “Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications,” Sci. Technol. Adv. Mater. 15 (2), 025001 (2014).

M. Ge, X. Fang, J. Rong, and C. Zhou, “Review of porous silicon preparation and its application for lithiumion battery anodes,” Nanotecnology 24 (42), 422001 (2013).

F. Liang, H. Wang, and Ch. Zou, “Effects of ion source voltages on the composition, hardness, and temperature-dependent tribological properties of Ti–Al–Si–N nanocomposite coatings,” Jpn J. Appl. Phys. 53 (7), 075503 (2014).

V. V. Vas’kevich, V. E. Gaishun, and D. L. Kovalenko, “Synthesis and study of silicate sol-gel coatings for micro and nanoelectronics,” Nanosyst., Nanomater., Nanotechnol. 12 (2), 279–293 (2014).

S. Ishihara, M. Kitagava, T. Hira, et al., “Effects of discharge parameters on deposition rate of hydrogenated amorphous silicon for solar cells from pure SiH4 plasma,” J. Appl. Phys. 62, 485–491 (1987).

Molecular Beam Epitaxy and Heterostructures, Ed. by L. L. Chang and K. Ploog, (Nijhoff, Amsterdam, 1985).

A. Kasdan and D. P. Goshorn, “Ion bombardment control of morphology during the growth of hydrogenated amorphous silicon thin films by reactive ion beam deposition,” Appl. Phys. Lett. 42 (1), 36–38 (1983).

D. M. Mitin and A. A. Serdobintsev, “Properties of silicon films grown at different pressures in the plasmaforming system,” Fiz. Tekh. Poluprovodn. (S.-Peterburg) 47 (9), 1276–1278 (2013).

D. V. Dukhopel’nikov, A. V. Zhukov, D. V. Kirillov, and M. K. Marakhtanov, “Structure and features of the motion of a cathode spot on a continuous titanium cathode,” Meas. Tech. 48 (10), 995–999 (2005).

D. V. Dukhopel’nikov, A. V. Zhukov, A. A. Kostin, and A. A. Yurchenko, “Motion control of the cathode spot in linear vacuum arc evaporators,” Uprochnyayushchie Tekhnol. Pokrytiya, No. 11, 45–49 (2005).

D. V. Dukhopel’nikov, D. V. Kirillov, E. V. Vorob’ev, and S. G. Ivakhnenko, “Influence of the cathode arc evaporator generation on the uniformity of the coating thickness and angular distribution of erosion products,” Nauka Obraz., Nauch. Izd. MGTU im. N.E. Baumana, No. 4, 1–9 (2014).

G. A. Mesyats and S. A. Barengol’ts, “Mechanism of anomalous ion generation in vacuum arcs,” Usp. Fiz. Nauk 172 (10), 1113–1130 (2002).

M. Naoe and Sh. Yamanaka, “Evaporation of silicon by vacuum-arc discharge,” Jpn. J. Appl. Phys. 8 (2), 287–288 (1969).

M. K. Marakhtanov, D. V. Dukhopel’nikov, A. V. Zhukov, D. V. Kirillov, A. K. Melik-Parsadanyan, and Yu. N. Parkhomenko, “Vacuum arc with monocrystalline silicon anode to produce nanostructured materials,” Sprav., Inzh. Zh. Prilozh., No. 9, 22–27 (2008).

D. V. Dukhopel’nikov, M. K. Marakhtanov, and A. K. Melik-Parsadanyan, “Electrical parameters and mass transfer in a vacuum-arc discharge with a monocrystalline silicon cathode,” Uprochnyayushchie Tekhnol. Pokrytiya, No. 7, 21–25 (2010).

D. V. Dukhopel’nikov, D. V. Kirillov, M. K. Marakhtanov, E. V. Vorob’ev, and V. S. Bulychev, “Vacuum arc on polycrystalline silicon anode,” Nauka Obraz., Nauchn. Izd. MGTU im. N. E. Baumana, No. 11, 188–197 (2014).

D. V. Dukhopel’nikov, D. V. Kirillov, V. A. Ryazanov, and Ch. V. Naing, “Optimizing the trajectory of the cathode spot movement to improve the uniformity of production of the vacuum arc evaporator cathode,” Inzh. Zh., Nauka Innovatsii, No. 10, 42 (2013).

D. V. Kirillov and V. A. Ryazanov, “Study of a cathode arc evaporator generation profile at different discharge currents and magnetic field induction,” Molodezhnyi Nauchno-Tekh. Vestn., No. 5, 18 (2013).

V. V. Beregovskii, M. K. Marakhtanov, D. V. Dukhopel’nikov, and S. A. Shchurenkova, “The volume content of the particulate composition of the droplet phase in the coatings obtained by vacuum-arc method at the unit PLATIT p-80,” Uprochnyayushchie Tekhnol. Pokrytiya, No. 1, 3–5 (2009).

Yu. A. Sysoev, “Features of condensation of the droplet phase of the vacuum arc charge at the ion cleaning stage,” Aviats.-Kosmich. Tekh. Tekhnol., No. 3, 15–19 (2014).

V. V. Beregovskii, D. V. Dukhopel’nikov, M. K. Marakhtanov, and S. A. Shchurenkova, “Comparative analysis of the droplet phase in the coatings obtained by vacuum arc deposition at units type of HHB and PLATIT p80,” Vestn. Magnitogorsk. Gos. Tekh. Univ. im. G.I. Nosova, No. 4, 29–32 (2008).

A. A. Bizyukov, E. V. Romashchenko, K. N. Sereda, A. D. Chibisov, and A. E. Kashaba, “The dynamics of the droplet phase in the plasma of the arc discharge of low pressure,” Vestn. Khar’k. Univ., Ser. Yadra, Chastitsy, Polya, No. 642, 42–46 (2004).

P. Fauchais, “Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: An invited review,” J. Phys. D, Appl. Phys. 44 (9) (2011).

K. Yang, “Recent developments in the research of splat formation process in thermal spraying,” J. Mater. 2013 (2013).

Chr. Mundo, “Droplet-wall collisions: Experimental studies of the deformation and breakup process,” Int. J. Multiphase Flow 21 (2), 151–173 (1995).

A. L. Yarin, “Drop impact dynamics: Splashing, spreading, receding, bouncing,” Annu. Rev. Fluid Mech. 38, 159–192 (2006).