Đặc điểm tích lũy thủy ngân (Hg) ở động vật phù du dựa trên tập dữ liệu toàn cầu và những tác động đến hệ thống nước với sự mất cân bằng dinh dưỡng gia tăng

Zhike Li1, Jie Chi1, Zhenyu Wu1, Yiyan Zhang1, Yiran Liu2, Lanlan Huang1, Yiren Lu1, Minhaz Uddin1, Wei Zhang3, Xuejun Wang4, Yan Lin5, Yindong Tong1
1School of Environmental Science and Engineering, Tianjin University, Tianjin, China
2School of Economics and Management, China University of Petroleum, Beijing, China
3School of Environment and Natural Resource, Renmin University of China, Beijing, China
4College of Urban and Environmental Sciences, Peking University, Beijing, China
5Norwegian Institute for Water Research, Oslo, Norway

Tóm tắt

Việc tích lũy thủy ngân (Hg) trong hệ sinh thái nước đứng trước nguy cơ sức khỏe tiềm tàng cho con người và sinh vật thủy sinh. Sự tích lũy bởi động vật phù du đại diện cho một quá trình quan trọng của việc chuyển giao Hg từ nước vào chuỗi thức ăn thủy sản. Tuy nhiên, sự hiểu biết hiện tại về các yếu tố chính ảnh hưởng đến sự tích lũy Hg ở động vật phù du còn chưa đầy đủ. Trong nghiên cứu này, một tập dữ liệu gồm 89 hệ sinh thái nước trên toàn cầu, bao gồm nước nội địa, nước ven bờ và biển mở, đã được thiết lập. Các yếu tố chính ảnh hưởng đến tích lũy Hg ở động vật phù du (tức là, loài động vật phù du, kích thước tế bào và sinh khối) đã được thảo luận. Kết quả cho thấy nồng độ thủy ngân tổng cộng (THg) và methylmercury (MeHg) trong động vật phù du ở vùng nước nội địa cao hơn đáng kể so với vùng nước ven bờ và biển mở. Các yếu tố tích lũy sinh học cho logarithm của THg và MeHg của thực vật phù du lần lượt là 2.4–6.0 và 2.6–6.7 L/kg, trong tất cả các hệ sinh thái nước. Chúng có thể được tăng cường thêm với yếu tố 2.1–15.1 và 5.3–28.2 từ thực vật phù du sang động vật phù du. Nồng độ MeHg cao hơn đã được quan sát thấy với sự gia tăng kích thước tế bào cho cả thực vật và động vật phù du. Một xu hướng trái ngược đã được quan sát thấy giữa sinh khối động vật phù du và BAFMeHg, với mối quan hệ dương cho động vật phù du và mối quan hệ âm cho thực vật phù du. Các đặc điểm sinh lý của động vật phù du đặt ra những hạn chế về tỷ lệ thu nhận dinh dưỡng và chất ô nhiễm từ nước. Hiện nay, nhiều hệ sinh thái nước đang đối diện với những biến đổi nhanh chóng trong thành phần dinh dưỡng. Chúng tôi đề xuất rằng những tác động tiềm tàng này đến sự phát triển và thành phần của động vật phù du cần được xem xét trong mô hình hóa thủy ngân nước tương lai và đánh giá rủi ro sinh thái.

Từ khóa

#thủy ngân #động vật phù du #tích lũy sinh học #sinh khối #hệ sinh thái nước

Tài liệu tham khảo

Abonyi A, Kiss K T, Hidas A, Borics G, Várbíró G, Ács É (2020). Cell size decrease and altered size structure of phytoplankton constrain ecosystem functioning in the Middle Danube River Over Multiple Decades. Ecosystems (New York, N.Y.), 23(6): 1254–1264 Alvarez-Fernandez S, Bach L T, Taucher J, Riebesell U, Sommer U, Aberle N, Brussaard C P D, Boersma M (2018). Plankton responses to ocean acidification: The role of nutrient limitation. Progress in Oceanography, 165: 11–18 Bergström A, Karlsson J, Karlsson D, Vrede T (2018). Contrasting plankton stoichiometry and nutrient regeneration in northern arctic and boreal lakes. Aquatic Sciences, 80(2): 24–28 Borics G, Abonyi A, Salmaso N, Ptacnik R (2021). Freshwater phytoplankton diversity: Models, drivers and implications for ecosystem properties. Hydrobiologia, 848(1): 53–75 Bravo A G, Cosio C, Amouroux D, Zopfi J, Chevalley P, Spangenberg J E, Ungureanu V, Dominik J (2014). Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant. Water Research, 49: 391–405 Brito B C, Forsberg B R, Kasper D, Amaral J H F, de Vasconcelos M R R, de Sousa O P, Cunha F A G, Bastos W R (2017). The influence of inundation and lake morphometry on the dynamics of mercury in the water and plankton in an Amazon floodplain lake. Hydrobiologia, 790(1): 35–48 Budnik L T, Casteleyn L (2019). Mercury pollution in modern times and its socio-medical consequences. Science of the Total Environment, 654: 720–734 Burson A, Stomp M, Akil L, Brussaard C P D, Huisman J (2016). Unbalanced reduction of nutrient loads has created an offshore gradient from phosphorus to nitrogen limitation in the North Sea. Limnology and Oceanography, 61(3): 869–888 Clayden M G, Kidd K A, Wyn B, Kirk J L, Muir D C G, O’Driscoll N J (2013). Mercury biomagnification through food webs is affected by physical and chemical characteristics of lakes. Environmental Science & Technology, 47(21): 12047–12053 Dai S S, Yang Z, Tong Y, Chen L, Liu S Y, Pan R, Li Y, Zhang C J, Liu Y R, Huang Q (2021). Global distribution and environmental drivers of methylmercury production in sediments. Journal of Hazardous Materials, 407: 124700–124707 Dominik J, Tagliapietra D, Bravo A G, Sigovini M, Spangenberg J E, Amouroux D, Zonta R (2014). Mercury in the food chain of the Lagoon of Venice, Italy. Marine Pollution Bulletin, 18(1–2): 194–206 Driscoll C T, Chen C Y, Hammerschmidt C R, Mason R P, Gilmour C C, Sunderland E M, Greenfield B K, Buckman K L, Lamborg C H (2012). Nutrient supply and mercury dynamics in marine ecosystems: A conceptual model. Environmental Research, 119: 118–131 Elser J J, Fagan W F, Denno R F, Dobberfuhl D R, Folarin A, Huberty A, Interlandi S, Kilham S S, McCauley E, Schulz K L, Siemann E H, Sterner R W (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408(6812): 578–580 Eriksen H H, Perrez F X (2014). The minamata convention: A comprehensive response to a global problem. Review of European, Comparative & International Environmental Law, 23(2): 195–210 Finkel Z V, Beardall J, Flynn K J, Quigg A, Rees T A V, Raven J A (2010). Phytoplankton in a changing world: Cell size and elemental stoichiometry. Journal of Plankton Research, 32(1): 119–137 Finkel Z V, Sebbo J, Feist-Burkhardt S, Irwin A J, Katz M E, Schofield O M E, Young J R, Falkowski P G (2007). A universal driver of macroevolutionary change in the size of marine phytoplankton over the Cenozoic. Proceedings of the National Academy of Sciences of the United States of America, 104(51): 20416–20420 Fox A L, Trefry J H, Trocine R P, Dunton K H, Lasorsa B K, Konar B, Ashjian C J, Cooper L W (2017). Mercury biomagnification in food webs of the northeastern Chukchi Sea, Alaskan Arctic. Deep-sea Research. Part II, Topical Studies in Oceanography, 144: 63–77 Gorski P R, Cleckner L B, Hurley J P, Sierszen M E, Armstrong D E (2003). Factors affecting enhanced mercury bioaccumulation in inland lakes of Isle Royale National Park, USA. Science of the Total Environment, 304: 327–348 Gosnell K J, Balcom P H, Tobias C R, Gilhooly W P III, Mason R P (2017). Spatial and temporal trophic transfer dynamics of mercury and methylmercury into zooplankton and phytoplankton of Long Island Sound. Limnology and Oceanography, 62(3): 1122–1138 Gosnell K J, Mason R P (2015). Mercury and methylmercury incidence and bioaccumulation in plankton from the central Pacific Ocean. Marine Chemistry, 177: 772–780 Grizzetti B, Bouraoui F, Aloe A (2012). Changes of nitrogen and phosphorus loads to European seas. Global Change Biology, 18(2): 769–782 Guédron S, Point D, Acha D, Bouchet S, Baya P A, Tessier E, Monperrus M, Molina C I, Groleau A, Chauvaud L, Thebault J, Amice E, Alanoca L, Duwig C, Uzu G, Lazzaro X, Bertrand A, Bertrand S, Barbraud C, Delord K, Gibon F M, Ibanez C, Flores M, Fernandez Saavedra P, Ezpinoza M E, Heredia C, Rocha F, Zepita C, Amouroux D (2017). Mercury contamination level and speciation inventory in Lakes Titicaca & Uru-Uru (Bolivia): Current status and future trends. Environmental Pollution, 231: 262–270 Guildford S J, Hecky R E (2000). Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnology and Oceanography, 45(6): 1213–1223 Hall B D, Louis V L S, Rolfhus K R, Bodaly R A, Beaty K G, Paterson M J, Cherewyk K A P (2005). Impacts of reservoir creation on the biogeochemical cycling of methyl mercury and total mercury in boreal upland forests. Ecosystems, 8(3): 248–266 Hirota R, Fujiki M, Tajima S (1974). Mercury contents of the plankton collected in Ariake- and Yatsushiro-kai. Bulletin of the the Japanese Society of Scientific Fisheries, 40(4): 393–397 Huisman J, Codd G A, Paerl H W, Ibelings B W, Verspagen J M H, Visser P M (2018). Cyanobacterial blooms. Nature Reviews. Microbiology, 16(8): 471–483 Kainz M, Mazumder A (2005). Effect of algal and bacterial diet on methyl mercury concentrations in zooplankton. Environmental Science & Technology, 39(6): 1666–1672 Karpowicz M, Feniova I, Gladyshev M I, Ejsmont-Karabin J, Górniak A, Zieliński P, Dawidowicz P, Kolmakova A A, Dzialowski A R (2019). The stoichiometric ratios (C:N:P) in a pelagic food web under experimental conditions. Limnologica, 77: 125690–125698 Kim H, Soerensen A L, Hur J, Heimbürger L, Hahm D, Rhee T S, Noh S, Han S (2017). Methylmercury mass budgets and distribution characteristics in the western pacific ocean. Environmental Science & Technology, 51(3): 1186–1194 Kim H, Van Duong H, Kim E, Lee B, Han S (2014). Effects of phytoplankton cell size and chloride concentration on the bioaccumulation of methylmercury in marine phytoplankton. Environmental Toxicology, 29(8): 936–941 Kocman D, Wilson S, Amos H, Telmer K, Steenhuisen F, Sunderland E, Mason R, Outridge P, Horvat M (2017). Toward an assessment of the global inventory of Present-Day mercury releases to freshwater environments. International Journal of Environmental Research and Public Health, 14(2): 138–154 Lavoie R A, Jardine T D, Chumchal M M, Kidd K A, Campbell L M (2013). Biomagnification of mercury in aquatic food webs: A worldwide Meta-Analysis. Environmental Science & Technology, 47(23): 13385–13394 Le Faucheur S, Campbell P G C, Fortin C, Slaveykova V I (2014). Interactions between mercury and phytoplankton: Speciation, bioavailability, and internal handling. Environmental Toxicology and Chemistry, 33(6): 1211–1224 Lee C, Fisher N S (2016). Methylmercury uptake by diverse marine phytoplankton. Limnology and Oceanography, 61(5): 1626–1639 Lehnherr I (2014). Methylmercury biogeochemistry: A review with special reference to Arctic aquatic ecosystems. Environmental Reviews, 22(3): 229–243 Lei P, Nunes L M, Liu Y, Zhong H, Pan K (2019). Mechanisms of algal biomass input enhanced microbial Hg methylation in lake sediments. Environment International, 126: 279–288 Liem-Nguyen V, Skyllberg U, Björn E (2021). Methylmercury formation in boreal wetlands in relation to chemical speciation of mercury(II) and concentration of low molecular mass thiols. Science of the Total Environment, 755 (Pt 2): 142666 Liu B, Yan H, Wang C, Li Q, Guédron S, Spangenberg J E, Feng X, Dominik J (2012). Insights into low fish mercury bioaccumulation in a mercury-contaminated reservoir, Guizhou, China. Environmental Pollution, 160: 109–117 Liu J, Wang L, Zhu Y, Lin C, Jang C, Wang S, Xing J, Yu B, Xu H, Pan Y (2019). Source attribution for mercury deposition with an updated atmospheric mercury emission inventory in the Pearl River Delta Region, China. Frontiers of Environmental Science & Engineering, 13(1): 2 Liu M, Chen L, Wang X, Zhang W, Tong Y, Ou L, Xie H, Shen H, Ye X, Deng C, Wang H (2016a). Mercury export from mainland China to adjacent seas and its influence on the marine mercury balance. Environmental Science & Technology, 50(12): 6224–6232 Liu M, Zhang W, Wang X, Chen L, Wang H, Luo Y, Zhang H, Shen H, Tong Y, Ou L, Xie H, Ye X, Deng C (2016b). Mercury release to aquatic environments from anthropogenic sources in China from 2001 to 2012. Environmental Science & Technology, 50(15): 8169–8177 Long S, Hamilton P B, Yang Y, Wang S, Huang W, Chen C, Tao R (2018). Differential bioaccumulation of mercury by zooplankton taxa in a mercury-contaminated reservoir Guizhou, China. Environmental Pollution, 239: 147–160 Lorenz P, Trommer G, Stibor H (2019). Impacts of increasing nitrogen: phosphorus ratios on zooplankton community composition and whitefish (Coregonus macrophthalmus) growth in a pre-alpine lake. Freshwater Biology, 64(6): 1210–1225 Mason R P, Reinfelder J R, Morel F M M (1996). Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environmental Science & Technology, 30(6): 1835–1845 Meili M (1991). Mercury in forest lake ecosystems-bioavailability, bioaccumulation and biomagnification. Water, Air, and Soil Pollution, 55: 131–157 Ndu U, Christensen G A, Rivera N A, Gionfriddo C M, Deshusses M A, Elias D A, Hsu-Kim H (2018). Quantification of mercury bioavailability for methylation using diffusive gradient in Thin-Film samplers. Environmental Science & Technology, 52(15): 8521–8529 Nguyen H, Leermakers M, Kurunczi S, Bozo L, Baeyens W (2005). Mercury distribution and speciation in Lake Balaton, Hungary. Science of the Total Environment, 340(1–3): 231–246 Nguetseng R, Fliedner A, Knopf B, Lebreton B, Quack M, Rudel H (2015). Retrospective monitoring of mercury in fish from selected European freshwater and estuary sites. Chemosphere, 134: 427–434 Obrist D, Kirk J L, Zhang L, Sunderland E M, Jiskra M, Selin N E (2018). A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio, 47(2): 116–140 Ouédraogo O, Chételat J, Amyot M (2015). Bioaccumulation and trophic transfer of mercury and selenium in african Sub-Tropical fluvial reservoirs food webs (Burkina faso). PLoS One, 10(4): e0123048 Paerl H W, Havens K E, Xu H, Zhu G, McCarthy M J, Newell S E, Scott J T, Hall N S, Otten T G, Qin B (2020). Mitigating eutrophication and toxic cyanobacterial blooms in large lakes: the evolution of a dual nutrient (N and P) reduction paradigm. Hydrobiologia, 847(21): 4359–4375 Penuelas J, Janssens I A, Ciais P, Obersteiner M, Sardans J (2020). Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Global Change Biology, 26(4): 1962–1985 Pickhardt P C, Fisher N S (2007). Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies. Environmental Science & Technology, 41(1): 125–131 Pickhardt P C, Folt C L, Chen C Y, Klaue B, Blum J D (2005). Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web. Science of the Total Environment, 339(1–3): 89–101 Pirarath R, Shivashanmugam P, Syed A, Elgorban A M, Anandan S, Ashokkumar M (2021). Mercury removal from aqueous solution using petal-like MoS2 nanosheets. Frontiers of Environmental Science & Engineering, 15(1): 15 Posch T, Köster O, Salcher M M, Pernthaler J (2012). Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nature Climate Change, 2(11): 809–813 Poste A E, Hoel C S, Andersen T, Arts M T, Færøvig P, Borgå K (2019). Terrestrial organic matter increases zooplankton methylmercury accumulation in a brown-water boreal lake. Science of the Total Environment, 674: 9–18 Poste A E, Muir D C G, Guildford S J, Hecky R E (2015). Bioaccumulation and biomagnification of mercury in African lakes: The importance of trophic status. Science of the Total Environment, 506–507: 126–136 Razavi N R, Qu M, Chen D, Zhong Y, Ren W, Wang Y, Campbell L M (2015). Effect of eutrophication on mercury (Hg) dynamics in subtropical reservoirs from a high Hg deposition ecoregion. Limnology and Oceanography, 60(2): 386–401 Redfield A C (1934). On the proportions of organic derivations in sea water and their relation to the composition of plankton. In: Daniel R J, ed. James Johnstone Memorial Volume. Liverpool: University Press of Liverpool, 176–192 Ribeiro Guevara S, Queimaliños C P, Diéguez M D C, Arribére M (2008). Methylmercury production in the water column of an ultraoligotrophic lake of Northern Patagonia, Argentina. Chemosphere, 72(4): 578–585 Rolfhus K R, Hall B D, Monson B A, Paterson M J, Jeremiason J D (2011). Assessment of mercury bioaccumulation within the pelagic food web of lakes in the western Great Lakes region. Ecotoxicology (London, England), 20(7): 1520–1529 Schartup A T, Balcom P H, Soerensen A L, Gosnell K J, Calder R S D, Mason R P, Sunderland E M (2015). Freshwater discharges drive high levels of methylmercury in Arctic marine biota. Proceedings of the National Academy of Sciences of the United States of America, 112(38): 11789–11794 Schartup A T, Qureshi A, Dassuncao C, Thackray C P, Harding G, Sunderland E M (2018). A model for methylmercury uptake and trophic transfer by marine plankton. Environmental Science & Technology, 52(2): 654–662 Schartup A T, Thackray C P, Qureshi A, Dassuncao C, Gillespie K, Hanke A, Sunderland E M (2019). Climate change and overfishing increase neurotoxicant in marine predators. Nature, 572(7771): 648–650 Schulhof M A, Shurin J B, Declerck S A J, Van de Waal D B (2019). Phytoplankton growth and stoichiometric responses to warming, nutrient addition and grazing depend on lake productivity and cell size. Global Change Biology, 25(8): 2751–2762 Si Y, Zou Y, Liu X, Si X, Mao J (2015). Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria. Chemosphere, 122: 206–212 Soerensen A L, Schartup A T, Gustafsson E, Gustafsson B G, Undeman E, Björn E (2016). Eutrophication increases phytoplankton methylmercury concentrations in a coastal sea: A baltic sea case study. Environmental Science & Technology, 50(21): 11787–11796 Sterner R W, Elser J J (2003). Ecological stoichiometry: The biology of elements from molecules to the biosphere. Nature, 423(6937): 225–226 Sunderland E M, Mason R P (2007). Human impacts on open ocean mercury concentrations. Global Biogeochemical Cycles, 21(4): B4022–B4038 Tada Y, Marumoto K (2020). Uptake of methylmercury by marine microalgae and its bioaccumulation in them. Journal of Oceanography, 76(1): 63–70 Tong Y, Wang M, Bu X, Guo X, Lin Y, Lin H, Li J, Zhang W, Wang X (2017). Mercury concentrations in China’s coastal waters and implications for fish consumption by vulnerable populations. Environmental Pollution, 231: 396–405 Tong Y, Wang M, Penuelas J, Liu X, Paerl H W, Elser J J, Sardans J, Couture R M, Larssen T, Hu H, Dong X, He W, Zhang W, Wang X, Zhang Y, Liu Y, Zeng S, Kong X, Janssen A, Lin Y (2020). Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions. Proceedings of the National Academy of Sciences of the United States of America, 117(21): 11566–11572 Tong Y, Zhang W, Hu X, Ou L, Hu D, Yang T, Wei W, Wang X (2012). Model description of trophodynamic behavior of methylmercury in a marine aquatic system. Environmental Pollution, 166: 89–97 Trommer G, Lorenz P, Lentz A, Fink P, Stibor H (2019). Nitrogen enrichment leads to changing fatty acid composition of phytoplankton and negatively affects zooplankton in a natural lake community. Scientific Reports, 9(1): 16805–16816 US EPA (2012). Integrated Risk Information System (IRIS) on methyl mercury. Washington D. C.: National Center for Environmental Assessment US FDA (2017). Fish Advice: Technicalinformation. Washington D. C.: U. S. Food and Drug Administration Višnjevec A M, Kocman D, Horvat M (2014). Human mercury exposure and effects in Europe. Environmental Toxicology and Chemistry, 33(6): 1259–1270 Waite A, Fisher A, Thompson P A, Harrison P J (1997). Sinking rate versus cell volume relationships illuminate sinking rate control mechanisms in marine diatoms. Marine Ecology Progress Series, 157: 97–108 Watras C J, Back R C, Halvorsen S, Hudson R J, Morrison K A, Wente S P (1998). Bioaccumulation of mercury in pelagic freshwater food webs. Science of the Total Environment, 219(2–3): 183–208 Wang J, Bouwman A F, Liu X, Beusen A H W, Van Dingenen R, Dentener F, Yao Y, Glibert P M, Ran X, Yao Q, Xu B, Yu R, Middelburg J J, Yu Z (2021). Harmful algal blooms in chinese coastal waters will persist due to perturbed nutrient ratios. Environmental Science & Technology Letters, 8(3): 276–284 Wang M, Xu X, Wu Z, Zhang X, Sun P, Wen Y, Wang Z, Lu X, Zhang W, Wang X, Tong Y (2019). Seasonal pattern of nutrient limitation in a eutrophic lake and quantitative analysis of the impacts from internal nutrient cycling. Environmental Science & Technology, 53(23): 13675–13686 Wang S, Li B, Zhang M, Xing D, Jia Y, Wei C (2012). Bioaccumulation and trophic transfer of mercury in a food web from a large, shallow, hypereutrophic lake (Lake Taihu) in China. Environmental Science and Pollution Research, 19(7): 2820–2831 Wickham S B, Darimont C T, Reynolds J D, Starzomski B M (2019). Species-specific wet-dry mass calibrations for dominant Northeastern Pacific Ocean macroalgae and seagrass. Aquatic Botany, 152: 27–31 Wiener J G, Knights B C, Sandheinrich M B, Jeremiason J D, Brigham M E, Engstrom D R, Woodruff L G, Cannon W F, Balogh S J (2006). Mercury in soils, lakes, and fish in voyageurs national park (Minnesota): importance of atmospheric deposition and ecosystem factors. Environmental Science & Technology, 40(20): 6261–6268 Wu H, Ding Z, Liu Y, Liu J, Yan H, Pan J, Li L, Lin H, Lin G, Lu H (2011). Methylmercury and sulfate-reducing bacteria in mangrove sediments from Jiulong River Estuary, China. Journal of Environmental Sciences-China, 23(1): 14–21 Wu P, Kainz M, Åkerblom S, Bravo A G, Sonesten L, Branfireun B, Deininger A, Bergström A, Bishop K (2019a). Terrestrial diet influences mercury bioaccumulation in zooplankton and macroinvertebrates in lakes with differing dissolved organic carbon concentrations. Science of the Total Environment, 669: 821–832 Wu P, Kainz M, Bravo A G, Åkerblom S, Sonesten L, Bishop K (2019b). The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: A meta-analysis. Science of the Total Environment, 646: 357–367 Wu P, Zakem E J, Dutkiewicz S, Zhang Y (2020). Biomagnification of methylmercury in a marine plankton ecosystem. Environmental Science & Technology, 54(9): 5446–5455 Wu Y, Wang W (2011). Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton. Environmental Pollution, 159(10): 3097–3105 Yoshino K, Mori K, Kanaya G, Kojima S, Henmi Y, Matsuyama A, Yamamoto M (2020). Food sources are more important than biomagnification on mercury bioaccumulation in marine fishes. Environmental Pollution, 262: 113982–113992 Zhang X, Qi M, Chen L, Wu T, Zhang W, Wang X, Tong Y (2020a). Recent change in nutrient discharge from municipal wastewater in China’s coastal cities and implication for nutrient balance in the nearshore waters. Estuarine, Coastal and Shelf Science, 242: 106856–106865 Zhang Y, Soerensen A L, Schartup A T, Sunderland E M (2020b). A global model for methylmercury formation and uptake at the base of marine food webs. Global Biogeochemical Cycles, 34(2): 1–21 Zhao H, Yan H, Zhang L, Sun G, Li P, Feng X (2019). Mercury contents in rice and potential health risks across China. Environment International, 126: 406–412