Characteristics of non-coplanar IMRT in the presence of target-embedded organs at risk
Tóm tắt
The aim is to analyze characteristics and to study the potentials of non-coplanar intensity modulated radiation therapy (IMRT) techniques. The planning study applies to generalized organ at risk (OAR) – planning target volume (PTV) geometries. The authors focus on OARs embedded in the PTV. The OAR shapes are spherically symmetric (A), cylindrical (B), and bended (C). Several IMRT techniques are used for the planning study: a) non-coplanar quasi-isotropic; b) two sets of equidistant coplanar beams, half of beams incident in a plane perpendicular to the principal plane; c) coplanar equidistant (reference); d) coplanar plus one orthogonal beam. The number of beam directions varies from 9 to 16. The orientation of the beam sets is systematically changed; dose distributions resulting from optimal fluence are explored. A selection of plans is optimized with direct machine parameter optimization (DMPO) allowing 120 and 64 segments. The overall plan quality, PTV coverage, and OAR sparing are evaluated. For all fluence based techniques in cases A and C, plan quality increased considerably if more irradiation directions were used. For the cylindrically symmetric case B, however, only a weak beam number dependence was observed for the best beam set orientation, for which non-coplanar directions could be found where OAR- and PTV-projections did not overlap. IMRT plans using quasi-isotropical distributed non-coplanar beams showed stable results for all topologies A, B, C, as long as 16 beams were chosen; also the most unfavorable beam arrangement created results of similar quality as the optimally oriented coplanar configuration. For smaller number of beams or application in the trunk, a coplanar technique with additional orthogonal beam could be recommended. Techniques using 120 segments created by DMPO could qualitatively reproduce the fluence based results. However, for a reduced number of segments the beam number dependence declined or even reversed for the used planning system and the plan quality degraded substantially. Topologies with targets encompassing sensitive OAR require sufficient number of beams of 15 or more. For the subgroup of topologies where beam incidences are possible which cover the whole PTV without direct OAR irradiation, the quality dependence on the number of beams is much less pronounced above 9 beams. However, these special non-coplanar beam directions have to be found. On the basis of this work the non-coplanar IMRT techniques can be chosen for further clinical planning studies.
Tài liệu tham khảo
Brahme A, Roos JE, Lax I. Solution of an integral equation encountered in rotation therapy. Phys Med Biol. 1982;27:1221–9.
Bratengeier K. 2-Step IMAT and 2-Step IMRT: a geometrical approach. Med Phys. 2005;32:777–85.
Bortfeld T, Burkelbach J, Boesecke R, Schlegel W. Methods of image reconstruction from projections applied to conformation radiotherapy. Phys Med Biol. 1990;35:1423–34.
Kak AC, M S: Principles of Computerized Tomographic Imaging. New York: IEEE Press; 1999/1988
Bratengeier K, Seubert B, Holubyev K, Schachner H. Considerations on IMRT for quasi-isotropic non-coplanar irradiation. Phys Med Biol. 2012;57:7303–15.
Breedveld S, Storchi PR, Voet PW, Heijmen BJ. iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans. Med Phys. 2012;39:951–63.
Bangert M, Ziegenhein P, Oelfke U. Characterizing the combinatorial beam angle selection problem. Phys Med Biol. 2012;57:6707–23.
Rossi L, Breedveld S, Heijmen BJ, Voet PW, Lanconelli N, Aluwini S. On the beam direction search space in computerized non-coplanar beam angle optimization for IMRT-prostate SBRT. Phys Med Biol. 2012;57:5441–58.
Schreibmann E, Xing L. Feasibility study of beam orientation class-solutions for prostate IMRT. Med Phys. 2004;31:2863–70.
Buzug TM. Computed tomography - from photon statistics to modern cone-beam CT. Berlin, Heidelberg: Springer; 2008.
Lin W-T. Computationally efficient cone beam CT reconstruction algorithm using circle-and-line orbit. In: Medical imaging physics of medical imaging. 1999. p. 933.
Bratengeier K, Meyer J, Flentje M. Pre-segmented 2-Step IMRT with subsequent direct machine parameter optimisation - a planning study. Radiat Oncol. 2008;3:38.
Bohsung J, Gillis S, Arrans R, Bakai A, De Wagter C, Knoos T, et al. IMRT treatment planning:- a comparative inter-system and inter-centre planning exercise of the ESTRO QUASIMODO group. Radiother Oncol. 2005;76:354–61.
van’t Riet A, Mak AC, Moerland MA, Elders LH, van der Zee W. A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate. Int J Radiat Oncol Biol Phys. 1997;37:731–6.
Bratengeier K, Gainey MB, Flentje M. Fast IMRT by increasing the beam number and reducing the number of segments. Radiat Oncol. 2011;6:170.
Webb S. Optimisation of conformal radiotherapy dose distributions by simulated annealing [published erratum appears in Phys Med Biol 1990 Feb;35(2):297]. Phys Med Biol. 1989;34:1349–70.
Holmes T, Mackie TR. A filtered backprojection dose calculation method for inverse treatment planning. Med Phys. 1994;21:303–13.
Popple RA, Brezovich IA, Fiveash JB. Beam geometry selection using sequential beam addition. Med Phys. 2014;41:051713.
Wang X, Zhang X, Dong L, Liu H, Gillin M, Ahamad A, et al. Effectiveness of noncoplanar IMRT planning using a parallelized multiresolution beam angle optimization method for paranasal sinus carcinoma. Int J Radiat Oncol Biol Phys. 2005;63:594–601.
Dong P, Lee P, Ruan D, Long T, Romeijn E, Yang Y, et al. 4pi non-coplanar liver SBRT: a novel delivery technique. Int J Radiat Oncol Biol Phys. 2013;85:1360–6.
Meedt G, Alber M, Nusslin F. Non-coplanar beam direction optimization for intensity-modulated radiotherapy. Phys Med Biol. 2003;48:2999–3019.
Aleman DM, Romeijn HE, Dempsey JF. A response surface approach to beam orientation optimization in intensity-modulated radiation therapy treatment planning. INFORMS J Comput. 2009;21:62–76.
Craft D. Local beam angle optimization with linear programming and gradient search. Phys Med Biol. 2007;52:N127–35.