Đặc điểm của các nanofibril cellulose được cô đặc đo bằng phép nhiệt quét khác biệt

Springer Science and Business Media LLC - Tập 30 - Trang 5019-5031 - 2023
Hefang Liu1, Qiyuan Tu1, Luyao Huang1, Wenhua Gao1,2, Jinsong Zeng1,2, Bin Wang1,2, Jinpeng Li1,2, Jun Xu1,2
1State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
2Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou, China

Tóm tắt

Nồng độ thấp của dung dịch nanofibril cellulose (CNF) chuẩn bị hạn chế ứng dụng quy mô lớn của nó. Trong nghiên cứu này, bột giấy kraft gỗ đã tẩy trắng không qua xử lý nào được chế biến thành dung dịch CNF với nồng độ khoảng 1,0 wt% bằng Supermasscolloider. Dung dịch CNF đã được tách nước bằng ly tâm để thu được CNF cô đặc (được gán nhãn 1-CNF). Mẫu 1-CNF sau đó được trộn với nước và phân tán bằng máy đồng nhất tốc độ cao và lại được tách nước để thu được CNF tái cô đặc (được gán nhãn 2-CNF). Kết quả cho thấy rằng độ ổn định của dung dịch, giá trị giữ nước và diện tích bề mặt riêng của CNF tái phân tán giảm so với CNF không cô đặc. Các khoang hoặc lỗ do nanofibril hình thành trong quá trình tách nước đã được đánh giá bằng hàm lượng nước đóng băng liên kết (FBW) được tính toán bằng nhiệt quét khác biệt với quy trình nóng chảy có bước đồng nhất. Các lỗ không được quan sát trong CNF không cô đặc ban đầu, trong khi các lỗ có kích thước từ 0–395,8 nm được tìm thấy trong hai mẫu CNF cô đặc (1-CNF và 2-CNF). Hàm lượng FBW của các mẫu CNF tăng khi hàm lượng chất rắn của hai CNF cô đặc tăng lên. Sau khi tái cô đặc, hàm lượng FBW của 2-CNF giảm so với 1-CNF. Tóm lại, quá trình cô đặc dung dịch CNF thúc đẩy sự hình thành các lỗ và các lỗ có kích thước nhỏ hình thành trước. Tuy nhiên, trong quá trình tái phân tán và tái cô đặc, các lỗ hình thành đã sụp đổ một phần và co lại.

Từ khóa

#nanofibril cellulose #dung dịch CNF #tách nước #ly tâm #nhiệt quét khác biệt

Tài liệu tham khảo

Andreasson B, Forsstrom J, Wagberg L (2003) The porous structure of pulp fibres with different yields and its influence on paper strength. Cellulose 10:111–123. https://doi.org/10.1023/a:1024055406619 Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content. Carbohydr Polym 84(3):975–983. https://doi.org/10.1016/j.carbpol.2010.12.052 Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8. https://doi.org/10.1016/j.cocis.2017.01.004 Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11:1808–1814. https://doi.org/10.1039/b915746h Fu HC, Li YF, Wang B, Li JP, Zeng JS, Li J, Chen KF (2021) Structural change and redispersion characteristic of dried lignin-containing cellulose nanofibril and its reinforcement in PVA nanocomposite film. Cellulose 28:7749–7764. https://doi.org/10.1007/s10570-021-04041-z Hoeger IC, Nair SS, Ragauskas AJ, Deng YL, Rojas OJ, Zhu JY (2013) Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20:807–818. https://doi.org/10.1007/s10570-013-9867-9 Isogai A (2020) Emerging Nanocellulose Technologies: recent developments. Adv Mater. https://doi.org/10.1002/adma.202000630 Kim J, Bang J, Kim Y, Kim JC, Hwang SW, Yeo H, Choi IG, Kwak HW (2022) Eco-friendly alkaline lignin/cellulose nanofiber drying system for efficient redispersion behavior. Carbohydr Polym 282:119–122. https://doi.org/10.1016/j.carbpol.2022.119122 Lihong G, Nitesh M, Chengbo Z, Farhan A, Priyanka RS, Xiangfang P, Benjamin SH, Söderberg LD (2018) Understanding the mechanistic behavior of highly charged cellulose nanofibers in Aqueous Systems. Macromol 51:1498–1506. https://doi.org/10.1021/acs.macromol.7b02642 Maloney TC, Paulapuro H, Stenius P (1998) Hydration and swelling of pulp fibers measured with differential scanning calorimetry. Nord Pulp Pap Res J 13(1):31–36. https://doi.org/10.3183/npprj-1998-13-01-p031-036 Matthias T, Katsumi K, Alexander VN, James PO, Francisco RR, Jean R, Kenneth SWS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1052–1069. https://doi.org/10.1515/pac-2014-1117 Meng X, Ragauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27:150–158. https://doi.org/10.1016/j.copbio.2014.01.014 Nordenstrom M, Kaldeus T, Erlandsson J, Pettersson T, Malmstrom E, Wagberg L (2021) Redispersion strategies for dried cellulose nanofibrils. ACS Sustainable Chem Eng 9(33):11003–11010. https://doi.org/10.1021/acssuschemeng.1c02122 Oyekanmi AA, Saharudin NI, Hazwan CM, Khalil H, Olaiya NG, Abdullah CK, Alfatah T, Gopakumar DA, Pasquini D (2021) Improved hydrophobicity of Macroalgae Biopolymer Film Incorporated with Kenaf Derived CNF using silane Coupling Agent. Molecules 26(8):2254. https://doi.org/10.3390/molecules26082254 Park S, Venditti RA, Jameel H, Pawlak JJ (2006) Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohydr Polym 66:97–103. https://doi.org/10.1016/j.carbpol.2006.02.026 Posada P, Velasquez-Cock J, Gomez-Hoyos C, Serpa Guerra AM, Lyulin SV, Kenny JM, Ganan P, Castro C, Zuluaga R (2020) Drying and redispersion of plant cellulose nanofibers for industrial applications: a review. Cellulose 27:10649–10670. https://doi.org/10.1007/s10570-020-03348-7 Qian Y, Zhong XW, Li Y, Qiu XQ (2017) Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor. Ind Crops Prod 101:54–60. https://doi.org/10.1016/j.indcrop.2017.03.001 Qing Y, Sabo R, Zhu JY, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97(1):226–234. https://doi.org/10.1016/j.carbpol.2013.04.086 Rojo E, Peresin MS, Sampson WW, Hoeger IC, Vartiainen J, Laine J, Rojas OJ (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17:1853–1866. https://doi.org/10.1039/c4gc02398f Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003 Sethi J, Oksman K, Illikainen M, Sirvio JA (2018) Sonication-assisted surface modification method to expedite the water removal from cellulose nanofibers for use in nanopapers and paper making. Carbohydr Polym 197:92–99. https://doi.org/10.1016/j.carbpol.2018.05.072 Sinquefield S, Ciesielski PN, Li K, Gardner DJ, Ozcan S (2020) Nanocellulose Dewatering and Drying: current state and future perspectives. ACS Sustainable Chem Eng 8:9601–9615. https://doi.org/10.1021/acssuschemeng.0c01797 Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. https://doi.org/10.1007/s10570-010-9405-y Sluiter A, Hames B, Ruiz RO, Scarlata C, Sluiter J, Templeton D (2004) Determination of structural carbohydrates and lignin in biomass. Biomass Anal Technol Team Lab Anal Proced 2011:1–14 Strømme M, Mihranyan A, Ek R, Niklasson GA (2003) Fractal Dimension of Cellulose Powders analyzed by Multilayer BET Adsorption of Water and Nitrogen. J Phys Chem B 107(51):14378–14382. https://doi.org/10.1021/jp034117w Tayeb AH, Amini E, Ghasemi S, Tajvidi M (2018) Cellulose nanomaterials-binding Properties and Applications: a review. Molecules 23(10):2684. https://doi.org/10.3390/molecules23102684 Velasquez-Cock J, Ganan P, Gomez C, Posada P, Castro C, Dufresne A, Zuluaga R (2018) Improved redispersibility of cellulose nanofibrils in water using maltodextrin as a green, easily removable and non-toxic additive. Food Hydrocolloids 79:30–39. https://doi.org/10.1016/j.foodhyd.2017.12.024 Vitas S, Segmehl J, Burgert I, Cabane E (2019) Porosity and pore size distribution of native and delignified Beech Wood determined by Mercury Intrusion Porosimetry. Materials 12(3):416. https://doi.org/10.3390/ma12030416 Wang SD, Gao WH, Chen KF, Xiang ZY, Zeng JS, Wang B, Xu J (2018) Deconstruction of cellulosic fibers to fibrils based on enzymatic pretreatment. Bioresour Technol 267:426–430. https://doi.org/10.1016/j.biortech.2018.07.067 Wang P, Huang L, He L, Gao W, Zeng J, Wang B, Xu J, Wang Z (2021) Characteristics of concentrated lignocellulosic nanofibril suspensions. Cellulose 29:147–158. https://doi.org/10.1007/s10570-021-04304-9 Wohlert M, Benselfelt T, Wågberg L, Furó I, Berglund LA, Wohlert J (2021) Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose 29:1–23. https://doi.org/10.1007/s10570-021-04325-4 Xiang ZY, Gao WH, Chen LH, Lan W, Zhu JY, Runge T (2016) A comparison of cellulose nanofibrils produced from Cladophora glomerata algae and bleached eucalyptus pulp. Cellulose 23:493–503. https://doi.org/10.1007/s10570-015-0840-7 Zeng ZH, Wang CX, Siqueira G, Han DX, Huch A, Abdolhosseinzadeh S, Heier J, Nuesch F, Zhang CF, Nystrom G (2020) Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv Sci 7(15):2000979. https://doi.org/10.1002/advs.202000979 Zhang YH, Hao NK, Lin XJ, Nie SX (2020) Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: a review. Carbohydr Polym 234. https://doi.org/10.1016/j.carbpol.2020.115888 Zhu JY, Agarwal UP, Ciesielski PN, Himmel ME, Gao RN, Deng YL, Morits M, Osterberg M (2021) Towards sustainable production and utilization of plant-biomass-based nanomaterials: a review and analysis of recent developments. Biotechnol Biofuels 14(1):114. https://doi.org/10.1186/s13068-021-01963-5