Các đặc điểm của biochar được sản xuất từ chất thải cắt tỉa cây ăn trái và tác động của chúng đến khả năng hấp thụ chì

Jong Hwan Park1, Yong Sik Ok2, Seong Heon Kim1, Se Won Kang3, Ju Sik Cho3, Jong Soo Heo1, Ronald D. Delaune4, Dong Cheol Seo3
1Divison of Applied Life Science (BK21 Plus) & Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
2Korea Biochar Research Center & Department of Biological Environment, Kangwon National University, Chuncheon, Republic of Korea
3Department of Bio-environmental Sciences, Sunchon National University, Suncheon, Republic of Korea
4Department of Oceanography and Costal Sciences, School of the Coast and Environment, Louisiana State University, Baton Rouge, USA

Tóm tắt

Mục đích của nghiên cứu này là đánh giá các đặc điểm của biochar có nguồn gốc từ chất thải cắt tỉa cây ăn trái (FTPW) và tác động của nó đến khả năng hấp thụ chì (Pb). Dựa trên kết quả của việc hấp thụ Pb, diện tích bề mặt và hàm lượng phốt pho, nhiệt độ pyrolysis tối ưu được xác định là 600 °C cho khả năng hấp thụ Pb. Sử dụng mô hình hấp thụ Freundlich, khả năng hấp thụ Pb (K) của biochar thu được từ các loại chất thải cắt tỉa cây ăn trái khác nhau giảm theo thứ tự như sau: lê (3.8001) ≫ hồng (2.3977) ≥ táo (2.1968). Dựa trên mô hình hấp thụ Langmuir, các khả năng hấp thụ Pb tối đa (a; mg g−1) của biochar thu được từ các loại chất thải cắt tỉa khác nhau được sắp xếp theo thứ tự: lê (26.2) ≫ hồng (19.9) ≥ táo (17.7). Khả năng hấp thụ Pb tối đa của biochar từ chất thải cắt tỉa cây lê lớn hơn so với biochar từ các loại chất thải cắt tỉa khác. Biochar từ chất thải cắt tỉa cây táo có khả năng hấp thụ Pb thấp nhất trong số các biochar được thử nghiệm. Mối tương quan dương giữa các giá trị khả năng hấp thụ tối đa Langmuir (L M) của các biochar và hàm lượng phốt pho cũng như diện tích bề mặt của chúng cho thấy sự khác biệt trong khả năng hấp thụ. Tuy nhiên, khả năng hấp thụ của biochar từ tất cả các loại chất thải cắt tỉa cây ăn trái đã được nghiên cứu có thể được sử dụng để loại bỏ Pb và các kim loại khác từ nước thải.

Từ khóa

#biochar #chất thải cắt tỉa cây ăn trái #hấp thụ chì #mô hình Freundlich #mô hình Langmuir

Tài liệu tham khảo

Abdulrazzaq H, Jol H, Husni A, Abu-Bakr R (2014) Characterization and stabilization of biochars obtained from empty fruit bunch, wood, and rice husk. BioResource 9:2888–2898 Adhikari R, Singh MV (2003) Sorption characteristics of lead and cadmium in some soils of India. Geoderma 114:81–92 Ahmad M, Lee SS, Dou X, Mohan D, Sung JK, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544 Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–23 Ali I (2010) The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Sepn Purifn Rev 39:95–171 Bagreev A, Bandosz TJ, Locke DC (2001) Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage derived fertilizer. Carbon 39:1971–1979 Bohn H, McNeal G, O’connor G (1979) Soil chemistry. Wiley, New York Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428 Cao X, Ma LQ, Chen M, Singh SP, Harris WG (2002) Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environ Sci Technol 36:5296–5304 Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76:127–133 Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143 Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102:8877–8884 Das DD, Schnitzer MI, Monreal CM, Mayer P (2009) Chemical composition of acid–base fractions separated from bio-oil derived by fast pyrolysis of chicken manure. Bioresour Technol 100:6524–6532 Demirbas E, Kobya M, Konukman AES (2008) Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions. J Hazard Mater 154:787–794 Downie A, Klatt P, Downie R, and Munroe P (2007) Slow pyrolysis: Australian demonstration plant successful on multifeedstocks. In: Bioenergy 2007 conference, Jyvaskyla Erto A, Andreozzi R, Lancia A, Musmarra D (2010) Factors affecting the adsorption of trichloroethylene onto activated carbons. Appl Surf Sci 256:5237–5242 Gaskin JW, Steiner C, Harris K, Das C, Bibens B (2008) Effect of low temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE 51:2061–2069 Gupta VK, Al Hayat M, Singh AK, Pal MK (2009) Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases. Anal Chim Acta 634:36–43 Hameed BH, Tan IAW, Ahmad AL (2008) Optimization of basic dye removal by oil palm fibre-based activated carbon using response surface methodology. J Hazard Mater 158:324–332 Houben D, Evrard L, Sonnet P (2013) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass and Energy 57:196–204 Inyang M, Gao B, Yao Y, Xue Y, Zimmerman AR, Pullammanappallil P, Cao X (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56 Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253 Khan S, Chao C, Arp HPH, Zhu YG (2013) Sewage sludge biochar influence upon rice (Oryza sativa L.) yield, metal bioaccumulation and greenhouse gas Emissions from acidic paddy soil. Environ Sci Technol 47:8624–8632 Khan S, Reid BJ, Li G, Zhu YG (2014) Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China. Environ Int 68:154–161 Korea Rural Economic Institute (KREI) (2014) Domestic biomass utilization and revitalization. Seoul Lu H, Zhang W, Yang Y, Huang X, Wang S, Qui R (2012) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res 46:854–862 Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ, Schomberg H (2009) Characterization of designer biochar produced at different temperature and their effects on a loamy sand. Ann Environ Sci 3:195–206 Rajapaksha AU, Vithanage M, Zhang M, Ahmad M, Dinesh M, Chang SX, Ok YS (2014) Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresour Technol 166:303–308 Scheckel KG, Ryan JA (2002) Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite. Environ Sci Technol 36:2198–2204 Shinogi Y (2004) Nutrient leaching from carbon products of sludge. In: ASAE/CSAE Annual International Meeting, Paper No. 044063, Ottawa Smider B, Singh B (2014) Agronomic performance of a high ash biochar in two contrasting soils. Agric Ecosyst Environ 191:99–107 Tan IAW, Ahmad AL, Hameed BH (2008) Preparation of activated carbon from coconut husk: optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. J Hazard Mater 153:709–717 Uchimiya M, Lima IM, Klasson KT, Chang SC, Wartelle LH, Rodgers JE (2010) Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter derived biochars in water and soil. J Agric Food Chem 58:5538–5544 Uchimiya M, Chang S, Klasson KT (2011) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190:432–441 Waqas M, Li G, Khan S, Shamshad I, Reid BJ, Qamar Z, Chao C (2015) Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato. Environ Sci Pollut Res. doi:10.1007/s11356-015-4432-8 Xu X, Gao X, Zhao L, Wang H, Yu H, Gao B (2013) Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ Sci Pollut Res 20:358–368 Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497 Zhang P, Ryan JA (1999) Transformation of Pb(II) from cerrusite to chloropyromorphite in the presence of hydroxyapatite under varying conditions of pH. Environ Sci Technol 33:625–630