Characteristics, loss and gain of atmospheric carbonyl compounds in winters of 2008–2010 in Pearl River Delta region, China
Tóm tắt
Formaldehyde (HCHO), acetaldehyde (CH3CHO) and acetone (CH3COCH3) were measured at Wanqingsha (WQS) in south China during November-December 2008–2010. Carbonyl compound pollution characteristics under the influence of the financial crisis (FC) were studied. Atmospheric carbonyl compound concentrations in the 2008 and 2009 sampling periods were affected by the 2008 FC. The industrial downturn plus the high closing down number of the small enterprises with limited emission treatment during the FC played an important role in the reduction of the industry-related CH3CHO and CH3COCH3. In 2010, the recovery of industrial activities occurred, but affected by traffic restriction enforcement in Guangzhou over the Asian Games period, HCHO concentration (daytime 7.59 ± 2.59 μg m−3) was lower than expectation. Carbonyl compounds in WQS site were highly influenced by regional pollution transport from different upwind urban cities and industrial districts in the north-northwest to northeast wind sector in winter. Also, the interaction of the winter monsoon with the warm ocean along the coastline as well as day and night boundary layer mixing height variation affected carbonyl compound concentrations in WQS. The daytime mean dry deposition losses of HCHO and CH3CHO were first time model-estimated for 2009 and 2010. For loss of HCHO in the early afternoon, photolysis was the dominant sink, followed by dry deposition and removal by OH radical (•OH), while for CH3CHO, dry deposition was dominant. For the gain of HCHO and CH3CHO, the production rates during early afternoon in 2009 and 2010 were estimated by an indirect approach.
Tài liệu tham khảo
Atkinson, R.: Gas-phase trospospheric chemistry of organic chemistry: a review. Atmos. Environ. 24A, 1–41 (1990). doi:10.1016/0960-1686(90)90438-S
Atkinson, R.: Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34(12–14), 2063–2101 (2000). doi:10.1016/S1352-2310(99)00460-4
Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase reactions of organic species. Atmos. Chem. Phys. 6, 3625–4055 (2006). doi:10.5194/acp-6-3625-2006
Boeke, N.L., Marshall, J.D., Alvarez, S., Chance, K.V., Fried, A., Kurosu, T.P., Rappenglück, B., Richter, D., Walega, J., Weibring, P., Millet, D.B.: Formaldehyde columns from the Ozone Monitoring Instrument: urban versus background levels and evaluation using aircraft data and a global model. J. Geophys. Res. 116, D05303 (2011). doi:10.1029/2010JD014870
Carlier, P., Hannachi, H., Mouvier, G.: The chemistry of carbonyl-compounds in the atmosphere—a review. Atmos. Environ. 20(11), 2079–2099 (1986). doi:10.1016/0004-6981(86)90304-5
Chan, C.K., Yao, X.: Air pollution in mega cities in China. Atmos. Environ. 42(1), 1–42 (2008). doi:10.1016/j.atmosenv.2007.09.003
Cheng, H.R., Guo, H., Wang, X.M., Saunders, S.M., Lam, S.H.M., Jiang, F., Wang, T.J., Ding, A.J., Lee, S.C., Ho, K.F.: On the relationship between ozone and its precursors in the Pearl River Delta: application of an observation-based model (OBM). Environ. Sci. Pollut. Res. 17(3), 547–560 (2010). doi:10.1007/s11356-009-0247-9
Dutta, C., Chatterjee, A., Jana, T.K., Mukherjee, A.K., Sen, S.: Contribution from the primary and secondary sources to the atmospheric formaldehyde in Kolkata. India. Sci. Total Environ. 408(20), 4744–4748 (2010). doi:10.1016/j.scitotenv.2010.01.031
Faloona I., Choi, W.S., Bouvier-Brown, N.C., Chen, Z., Gilman, J.B., LaFranchi, B.W., McKay, M., Wolfe, G.M., Brune, W.H., Cohen, R.C., Goldstein, A.H., Gouw, J.A., Thornton, J.A.: Coniferous Forest Canopy: Further Evidence of Rapid Oxidation of Arboreal Hydrocarbons. Green Acres, Blue Skies II conference (2009). http://airquality.ucdavis.edu/pages/events/2009/greenacres.html
Fan, S., Wang, B., Tesche, M., Engelmann, R., Althausen, A., Liu, J., Zhu, W., Fan, Q., Li, M., Ta, N.: Meteorological conditions and structures of atmospheric boundary layer in October 2004 over Pearl River Delta area. Atmos. Environ. 42(25), 6174–6186 (2008). doi:10.1016/j.atmosenv.2008.01.067
Feng, Y.L., Wen, S., Wang, X.M., Sheng, G.Y., He, Q.S., Tang, J.H., Fu, J.M.: Indoor and outdoor carbonyl compounds in the hotel ballrooms in Guangzhou. China. Atmos. Environ. 38(1), 103–112 (2004). doi:10.1016/j.atmosenv.2003.09.061
Feng, Y.L., Wen, S., Chen, Y.J., Wang, X.M., Lu, H.X., Bi, X.H., Sheng, G.Y., Fu, J.M.: Ambient levels of carbonyl compounds and their sources in Guangzhou. China. Atmos. Environ. 39(10), 1789–1800 (2005). doi:10.1016/j.atmosenv.2004.10.009
Finlayson-Pitts, B.J., Pitts, J.N.: Atmospheric chemistry fundamentals and experimental techniques. Wiley, New York (1986)
Grosjean, E., Grosjean, D., Fraser, M.P., Cass, G.R.: Air quality model evaluation data for organics. 2. C1-C14 carbonyls in Los Angeles air. Environ. Sci. Technol. 30(9), 2687–2703 (1996). doi:10.1021/es950758w
Guo, H., Jiang, F., Cheng, H.R., Simpson, I.J., Wang, X.M., Ding, A.J., Wang, T.J., Saunders, S.M., Wang, T., Lam, S.H.M., Blake, D.R., Zhang, Y.L.: Concurrent observations of air pollutants at two sites in the Pearl River Delta and the implication of regional transport. Atmos. Chem. Phys. 9(19), 7343–7360 (2009). doi:10.5194/acp-9-7343-2009
Guo, L.: The dilemma and the ways out for Chinese manufacturing during the economic crisis—Dongguan’s manufacturing as an example (in Chinese). J. Harbin Univ. Commer. 4, 61–64 (2009)
Ho, K.F., Ho, S.S.H., Cheng, Y., Lee, S.C., Yu, J.Z.: Real-world emission factors of fifteen carbonyl compounds measured in a Hong Kong tunnel. Atmos. Environ. 41(8), 1747–1758 (2007). doi:10.1016/j.atmosenv.2006.10.027
Jacob, D.J., Field, B.D., Jin, E.M., Bey, I., Li, Q., Logan, J.A., Yantosca, R.M., Singh, H.B.: Atmospheric budget of acetone. J. Geophys. Res. 107(D10), 4100 (2002). doi:10.1029/2001JD000694
Jenkin, M.E., Saunders, S.M., Pilling, M.J.: The tropospheric degradation of volatile organic compounds: a protocol for mechanism development. Atmos. Environ. 31(1), 81–104 (1997). doi:10.1016/S1352-2310(96)00105-7
Kim, D., Loughner, C.P., Wetzel, M.A., Goliff, W.S., Stockwell, W.R.: A comparison of photolysis rate parameters estimated from measured and simulated actinic flux for wintertime conditions at Storm Peak Laboratory. Colorado. J. Atmos. Chem. 57(1), 59–71 (2007). doi:10.1007/s10874-007-9061-2
Lary, D.J., Shallcross, D.E.: Central role of carbonyl compounds in atmospheric chemistry. J. Geophys. Res. 105, 19771–19778 (2000). doi:10.1029/1999JD901184
Lü, H., Cai, Q.-Y., Wen, S., Chi, Y., Guo, S., Sheng, G., Fu, J.: Seasonal and diurnal variations of carbonyl compounds in the urban atmosphere of Guangzhou. China. Sci. Total Environ. 408, 3523–3529 (2010). doi:10.1016/j.scitotenv.2010.05.013
Lü, H., Cai, Q.-Y., Wen, S., Chi, Y., Guo, S., Sheng, G., Fu, J., Antizar-Ladislao, B.: Carbonyl compounds in the ambient air of hazy days and clear days in Guangzhou. China. Atmos. Res. 94, 363–372 (2009). doi:10.1016/j.atmosres.2009.06.014
Pang, X.B., Mu, Y.J.: Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air. Atmos. Environ. 40(33), 6313–6320 (2006). doi:10.1016/j.atmosenv.2006.05.044
Possanzini, M., Di Palo, V., Cecinato, A.: Sources and photodecomposition of formaldehyde and acetaldehyde in Rome ambient air. Atmos. Environ. 36(19), 3195–3201 (2002). doi:10.1016/S1352-2310(02)00192-9
Sander, S. P., Golden, D. M., Kurylo, M. J., Huie, R. E., Orkin, V. L., Moortgat, G. K., Ravishankara, A. R.,Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation 14, Jet Propulsion Laboratory, Pasadena, CA (2003). http://jpldataeval.jpl.nasa.gov/
Shepson, P.B., Klelndlenst, T.E., Edney, E.O., Nero, C.M.: Acetaldehyde: the mutagenic activity of its photooxidation products. Environ. Sci. Technol. 20, 1008–1013 (1986). doi:10.1021/es00152a007
Weibring, P., Richter, D., Walega, J., Fried, A.: First demonstration of a high performance difference frequency spectrometer on airborne platforms. Optic Express 15, 13476–13495 (2007). doi:/10.1364/OE.15.013476
WHO (World Health Organization): Air quality guidelines for Europe, vol. 23. WHO European, Copenhagen (1987)
Wesely, M.L., Hicks, B.B.: A review of the current status of knowledge on dry deposition. Atmos. Environ. 34, 2261–2282 (2000). doi:10.1016/S1352-2310(99)00467-7
Wu, Z.Y., Wang, X.M., Chen, F., Turnipseed, A.A., Guenther, A.B., Niyogi, D., Charusombat, U., Xia, B.C., Munger, J.W., Alapaty, K.: Evaluating the calculated dry deposition velocities of reactive nitrogen oxides and ozone from two community models over a temperate deciduous forest. Atmos. Environ. 45(16), 2663–2674 (2011). doi:10.1016/j.atmosenv.2011.02.063
Zhang, L., Brook, J.R., Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models. Atmos. Chem. Phys. 3, 2067–2082 (2003). doi:10.5194/acp-3-2067-2003
Zhang, Y.L., Wang, X.M., Blake, D.R., Li, L.F., Zhang, Z., Wang, S.Y., Guo, H., Frank Lee, S.C., Gao, B., Chan, L.Y., Wu, D., Rowland, F.S.: Aromatic hydrocarbons as ozone precursors before and after outbreak of the 2008 financial crisis in the Pearl River Delta region, south China. J. Geophys. Res. 117(D15), 306 (2012). doi:10.1029/2011JD017356
Zhang, Y.N., Xiang, Y.R., Chan, L.Y., Chan, C.Y., Sang, X.F., Wang, R., Fu, H.X.: Procuring the regional urbanization and industrialization effect on ozone pollution in Pearl River Delta of Guangdong. China. Atmos. Environ. 45(28), 4898–4906 (2011). doi:10.1016/j.atmosenv.2011.06.013
Zheng, J.Y., Zheng, Z.Y., Yu, Y.F., Zhong, L.J.: Temporal, spatial characteristics and uncertainty of biogenic VOC emissions in the Pearl River Delta region. China. Atmos. Environ. 44(16), 1960–1969 (2010). doi:10.1016/j.atmosenv.2010.03.001