Characteristics investigation of Yb3+:YAG crystals for optical refrigeration
Tóm tắt
Yb3+:YAG crystal is one excellent material for developing high-power radiation-balanced lasers (RBLs). An experimental study of the laser cooling performances of YAG crystals with various doping Yb3+ concentrations, especially for application of RBLs, is reported here. With improved Yb3+ doping concentration in YAG crystal, though the resonance absorption coefficient increases, the corresponding external quantum efficiency has been found to decrease with the average fluorescence wavelength being red shifted, which is detrimental to anti-Stokes fluorescence (ASF) cooling. The decrease of the external quantum efficiency can cause the first zero crossing wavelength to red shift, which is not conducive to RBLs. Based on the comprehensive study of the cooling characteristics of the series of Yb3+-doped YAG crystals, the optimal Yb3+ doping concentration for ASF cooling has been suggested.
Tài liệu tham khảo
N. Djeu and W. Whitney, Laser cooling by spontaneous anti-Stokes scattering, Phys. Rev. Lett. 46(4), 236 (1981)
E. A. Cornell and C. E. Wieman, Bose—Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74(3), 875 (2002)
T. W. Hänsch and A. L. Schawlow, Cooling of gases by laser radiation, Opt. Commun. 13(1), 68 (1975)
D. S. Jin and J. Ye, Polar molecules in the quantum regime, Phys. Today 64(5), 27 (2011)
C. Zander and K. H. Drexhage, Cooling of a dye solution by anti-Stokes fluorescence, Adv. Photochem. 20, 59 (1995)
R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Observation of laser-induced fluorescent cooling of a solid, Nature 377(6549), 500 (1995)
D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, Laser cooling of solids to cryogenic temperatures, Nat. Photonics 4(3), 161 (2010)
S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. Sheik-Bahae, Solid-state optical refrigeration to sub-100 Kelvin regime, Sci. Rep. 6(1), 20380 (2016)
D. V. Seletskiy, R. Epstein, and M. Sheik-Bahae, Laser cooling in solids: Advances and prospects, Rep. Prog. Phys. 79(9), 096401 (2016)
W. D. Phillips, Nobel Lecture: Laser cooling and trapping of neutral atoms, Rev. Mod. Phys. 70(3), 721 (1998)
I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Optical atomic clocks, Rev. Mod. Phys. 87(2), 637 (2015)
R. Horchani, Laser cooling of internal degrees of freedom of molecules, Front. Phys. 11(4), 113301 (2016)
J. L. Bohn, A. M. Rey, and J. Ye, Cold molecules: Progress in quantum engineering of chemistry and quantum matter, Science 357(6355), 1002 (2017)
S. A. Malinovskaya, Laser cooling using adiabatic rapid passage, Front. Phys. 16(5), 52601 (2021)
Q. Liang, T. Chen, W. H. Bu, Y. H. Zhang, and B. Yan, Laser cooling with adiabatic passage for type-II transitions, Front. Phys. 16(3), 32501 (2021)
K. Yan, R. Gu, D. Wu, J. Wei, Y. Xia, and J. Yin, Simulation of EOM-based frequency-chirped laser slowing of MgF radicals, Front. Phys. 17(4), 42502 (2022)
W. Bu, Y. Zhang, Q. Liang, T. Chen, and B. Yan, Saturated absorption spectroscopy of buffer-gas-cooled Barium monofluoride molecules, Front. Phys. 17(6), 62502 (2022)
Y. Liu and L. Luo, Molecular collisions: From near-cold to ultra-cold, Front. Phys. 16(4), 42300 (2021)
R. Vicente, G. Nogues, J. M. Niot, T. Wiertz, P. Contini, and A. Gardelein, Impacts of laser cooling for low earth orbit observation satellites: An analysis in terms of size, weight and power, Cryogenics 105, 103000 (2020)
J. Li, Z. Chen, Y. Liu, P. S. Kollipara, Y. Feng, Z. Zhang, and Y. Zheng, Opto-refrigerative tweezers, Sci. Adv. 7(26), eabh1101 (2021)
M. P. Hehlen, J. Meng, A. R. Albrecht, E. R. Lee, A. Gragossian, S. P. Love, C. E. Hamilton, R. I. Epstein, and M. Sheik-Bahae, First demonstration of an all-solid-state optical cryocooler, Light Sci. Appl. 7(1), 15 (2018)
J. Knall, M. Engholm, T. Boilard, M. Bernier, P. B. Vigneron, N. Yu, P. D. Dragic, J. Ballato, and M. J. F. Digonnet, Radiation-balanced silica fiber laser, Optica 8(6), 830 (2021)
F. Caminati, G. Cittadino, E. Damiano, A. Di Lieto, and M. Tonelli, A design for optical refrigeration: The parallel configuration, Appl. Phys. Lett. 122(2), 021102(2023)
P. Pringsheim, Zwei bemerkungen über den unterschied von lumineszenz-und temperaturstrahlung, Eur. Phys. J. A 57(11–12), 739 (1929)
L. Landau, On the thermodynamics of photoluminescence, J. Phys. (Moscow) 10, 503 (1946)
W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8, Opt. Express 16(3), 1704 (2008)
S. Rostami, A. R. Albrecht, A. Volpi, M. P. Hehlen, M. Tonelli, and M. Sheik-Bahae, Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers, Opt. Lett. 44(6), 1419 (2019)
S. Rostami, A. R. Albrecht, A. Volpi, and M. Sheik-Bahae, Observation of optical refrigeration in a holmium-doped crystal, Photon. Res. 7(4), 445 (2019)
A. Gragossian, M. Ghasemkhani, J. Meng, A. Albrecht, M. Tonelli, and M. Sheik-Bahae, Optical refrigeration inches toward liquid-nitrogen temperatures, SPIE Newsroom (2017)
S. Bigotta, A. Di Lieto, A. Toncelli, M. Tonelli, D. Seletskiy, M. Hasselbeck, M. Sheik-Bahae, and R. Epstein, Laser cooling of solids: New results with single fluoride crystals, Nuovo Cimento-Societa Italiana Di Fisica Sezione B 122, 685 (2007)
B. Zhong, J. Yin, Y. Jia, L. Chen, Y. Hang, and J. Yin, Laser cooling of Yb3+-doped LuLiF4 crystal, Opt. Lett. 39(9), 2747 (2014)
B. Zhong, Y. Lei, H. Luo, Y. Shi, T. Yang, and J. Yin, Laser cooling of the Yb3+-doped LuLiF4 single crystal for optical refrigeration, J. Lumin. 226, 117472 (2020)
Y. Lei, B. Zhong, T. Yang, X. Duan, M. Xia, C. Wang, J. Xu, Z. Zhang, J. Ding, and J. Yin, Laser cooling of Yb3+:LuLiF4 crystal below cryogenic temperature to 121 K, Appl. Phys. Lett. 120(23), 231101 (2022)
J. Zhang, D. Li, R. Chen, and Q. Xiong, Laser cooling of a semiconductor by 40 Kelvin, Nature 493(7433), 504 (2013)
J. B. Khurgin, Multi-phonon-assisted absorption and emission in semiconductors and its potential for laser refrigeration, Appl. Phys. Lett. 104(22), 221115 (2014)
S. T. Ha, C. Shen, J. Zhang, and Q. Xiong, Laser cooling of organic—inorganic lead halide perovskites, Nat. Photonics 10(2), 115 (2016)
X. Xia, A. Pant, A. S. Ganas, F. Jelezko, and P. J. Pauzauskie, Quantum point defects for solid-state laser refrigeration, Adv. Mater. 33(23), 1905406 (2021)
J. Zhang, Q. Zhang, X. Wang, L. C. Kwek, and Q. Xiong, Resolved-sideband Raman cooling of an optical phonon in semiconductor materials, Nat. Photonics 10(9), 600 (2016)
D. Li, J. Zhang, and Q. Xiong, Laser cooling of CdS nanobelts: Thickness matters, Opt. Express 21(16), 19302 (2013)
S. R. Bowman, Lasers without internal heat generation, IEEE J. Quantum Electron. 35(1), 115 (1999)
S. R. Bowman, S. P. O’Connor, S. Biswal, N. J. Condon, and A. Rosenberg, Minimizing heat generation in solid-state lasers, IEEE J. Quantum Electron. 46(7), 1076 (2010)
G. Nemova and R. Kashyap, Thin-disk athermal laser system, Opt. Commun. 319, 100 (2014)
E. Mobini, M. Peysokhan, B. Abaie, and A. Mafi, Thermal modeling, heat mitigation, and radiative cooling for double-clad fiber amplifiers, J. Opt. Soc. Am. B 35(10), 2484 (2018)
J. M. Knall, M. Engholm, T. Boilard, M. Bernier, and M. Digonnet, Radiation-balanced silica fiber amplifier, Phys. Rev. Lett. 127(1), 013903 (2021)
J. M. Knall and M. J. Digonnet, Design of high-power radiation-balanced silica fiber lasers with a doped core and cladding, J. Lightwave Technol. 39(8), 2497 (2021)
M. Sheik-Bahae and Z. Yang, Optimum operation of radiation-balanced lasers, IEEE J. Quantum Electron. 56(1), 1 (2020)
G. Nemova and R. Kashyap, Athermal continuous-wave fiber amplifier, Opt. Commun. 282(13), 2571 (2009)
E. Mobini, S. Rostami, M. Peysokhan, A. Albrecht, and A. Mafi, Laser cooling of ytterbium-doped silica glass, Commun. Phys.-UK 3, 1 (2020)
E. Mobini, M. Peysokhan, B. Abaie, M. P. Hehlen, and A. Mafi, Spectroscopic investigation of Yb-doped silica glass for solid-state optical refrigeration, Phys. Rev. Appl. 11(1), 014066 (2019)
M. Peysokhan, E. Mobini, B. Abaie, and A. Mafi, Method for measuring the resonant absorption coefficient of rare-earth-doped optical fibers, Appl. Opt. 58(7), 1841 (2019)
X. Xia, A. Pant, E. J. Davis, and P. J. Pauzauskie, Design of a radiation-balanced fiber laser via optically active composite cladding materials, J. Opt. Soc. Am. B 36(12), 3307 (2019)
Z. Yang, J. Meng, A. R. Albrecht, and M. Sheik-Bahae, Radiation-balanced Yb:YAG disk laser, Opt. Express 27(2), 1392 (2019)
J. B. Khurgin, Radiation-balanced tandem semiconductor/Yb3+: YLF lasers: Feasibility study, J. Opt. Soc. Am. B 37(6), 1886 (2020)
J. Knall, M. Engholm, J. Ballato, P. D. Dragic, N. Yu, and M. J. Digonnet, Experimental comparison of silica fibers for laser cooling, Opt. Lett. 45(14), 4020 (2020)
M. Peysokhan, E. Mobini, A. Allahverdi, B. Abaie, and A. Mafi, Characterization of Yb-doped ZBLAN fiber as a platform for radiation-balanced lasers, Photon. Res. 8(2), 202 (2020)
M. Peysokhan, S. Rostami, E. Mobini, A. R. Albrecht, S. Kuhn, S. Hein, C. Hupel, J. Nold, N. Haarlammert, T. Schreiber, R. Eberhardt, A. Flores, A. Tünnermann, M. Sheik-Bahae, and A. Mafi, Implementation of laser-induced anti-stokes fluorescence power cooling of ytterbium-doped silica glass, ACS Omega 6(12), 8376 (2021)
R. I. Epstein, J. Brown, B. C. Edwards, and A. Gibbs, Measurements of optical refrigeration in ytterbium-doped crystals, J. Appl. Phys. 90(9), 4815 (2001)
E. S. L. Filho, G. Nemova, S. Loranger, and R. Kashyap, Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure, Opt. Express 21(21), 24711 (2013)
B. Zhong, Y. Lei, X. Duan, T. Yang, and J. Yin, Optical refrigeration of the Yb3+-doped YAG crystal close to the thermoelectric cooling limit, Appl. Phys. Lett. 118(13), 131104 (2021)
M. Sheik-Bahae and R. I. Epstein, Optical refrigeration, Nat. Photonics 1(12), 693 (2007)
D. C. Brown and V. A. Vitali, Yb:YAG kinetics model including saturation and power conservation, IEEE J. Quantum Electron. 47(1), 3 (2011)
S. D. Melgaard, Cryogenic optical refrigeration: Laser cooling of solids below 123 K, Ph.D Thesis, The University of New Mexico, 2013
X. Duan, B. Zhong, Y. Lei, C. Wang, J. Xu, Z. Zhang, J. Ding, and J. Yin, Accurate characterization of the properties of the rare-earth-doped crystal for laser cooling, Appl. Sci. (Basel) 12(9), 4447 (2022)
H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers, IEEE J. Sel. Top. Quantum Electron. 3(1), 105 (1997)
D. McCumber, Einstein relations connecting broadband emission and absorption spectra, Phys. Rev. 136(4A), A954 (1964)
A. Volpi, Laser cooling of fluoide crystals, Ph. D Thesis, Università di Pisa, 2015
G. Nemova and R. Kashyap, Optimization of optical refrigaration in Yb3+:YAG samples, J. Lumin. 164, 99 (2015)
F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, Laser demonstration of Yb3Al5O12/(YbAG) and materials properties of highly doped Yb:YAG, IEEE J. Quantum Electron. 37(1), 135 (2001)
F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, The interplay of self-trapping and self-quenching for resonant transitions in solids, role of a cavity, J. Lumin. 94–95, 293 (2001)
C. Goutaudier, K. Lebbou, Y. Guyot, M. Ito, H. Canibano, A. El Hassouni, L. Laversenne, M. T. Cohen-Adad, and G. Boulon, Advances in fibre crystals: Growth and optimization of spectroscopic properties for Yb3+ doped laser crystals, Ann. Chim. 28(6), 73 (2003)
Y. Nakayama, Y. Harada, and T. Kita, An energy transfer accompanied by phonon absorption in ytterbium-doped yttrium aluminum perovskite for optical refrigeration, Appl. Phys. Lett. 117(4), 041104 (2020)
D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, Cryogenic optical refrigeration, Adv. Opt. Photonics 4(1), 78 (2012)