Đặc điểm và nhiệt động lực học của các đợt nắng nóng ở Sahel được phân tích bằng các chỉ số nhiệt khác nhau

Springer Science and Business Media LLC - Tập 55 Số 11-12 - Trang 3151-3175 - 2020
Kiswendsida Guigma1, Martin C. Todd1, Yi Wang1
1University of Sussex, Brighton, UK

Tóm tắt

AbstractCác giai đoạn nắng nóng kéo dài, còn được gọi là đợt nắng nóng, đang trở thành một mối lo ngại ngày càng tăng trong bối cảnh biến đổi khí hậu. Tại Sahel, một khu vực nóng và bán khô hạn ở Tây Phi, các đợt nắng nóng vẫn chưa được hiểu rõ và quản lý. Trong nghiên cứu này, năm chỉ số nhiệt đa biến được trích xuất từ cơ sở dữ liệu ERA5 đã được sử dụng để đặc trưng hóa các đợt nắng nóng ở Sahel cho phân tích thống kê và làm cơ sở mẫu để điều tra nguyên nhân nhiệt động lực học cơ bản của chúng. Kết quả cho thấy, trung bình hầu hết các địa điểm tại Sahel chịu đựng một hoặc hai đợt nắng nóng mỗi năm kéo dài từ 3 đến 5 ngày nhưng có độ nghiêm trọng cao. Khu vực Sahel phía đông có nguy cơ cao hơn so với phía tây, trải qua nhiều sự kiện xảy ra thường xuyên và kéo dài hơn. Mặc dù thống kê về cường độ, thời gian và tần suất của các chỉ số đợt nắng nóng tương đối giống nhau, nhưng về một pha trong ngày nhất định, có sự không đồng nhất đáng ngạc nhiên trong thời điểm xảy ra các sự kiện. Hơn nữa, các đợt nắng nóng vào ban ngày và ban đêm có ít sự đồng bộ. Về mặt các quá trình nhiệt động lực học liên quan, sự khuếch tán nhiệt và hiệu ứng nhà kính của độ ẩm được xác định là nguyên nhân chính của các đợt nắng nóng ở Sahel. Tuy nhiên, các quá trình này nhạy cảm với các chỉ số, kết quả của sự khác biệt trong các mẫu tương ứng của chúng. Do đó, cần chú ý đến việc lựa chọn chỉ số nào trong việc giám sát và dự đoán hoạt động của các đợt nắng nóng. Điều này sẽ cho phép nhắm đúng vào các nhóm kinh tế xã hội khác nhau bị ảnh hưởng và do đó nâng cao hiệu quả của hệ thống cảnh báo sớm.

Từ khóa

#nắng nóng #Sahel #chỉ số nhiệt #nhiệt động lực học #biến đổi khí hậu

Tài liệu tham khảo

Adeniyi MO, Oyekola SO (2017) Assessment of heat and cold wave events over West Africa using three regional climate models. Ann Geophys 60:0322. https://doi.org/10.4401/ag-7039

Alamirew NK, Todd MC, Ryder CL et al (2018) The early summertime Saharan heat low: sensitivity of the radiation budget and atmospheric heating to water vapour and dust aerosol. Atmos Chem Phys 18:1241–1262

Anderberg MR (1973) Cluster analysis for applications. Academic Press, New York

Añel JA, Fernández-González M, Labandeira X et al (2017) Impact of cold waves and heat waves on the energy production sector. Atmosphere 8:209. https://doi.org/10.3390/atmos8110209

Arbuthnott KG, Hajat S (2017) The health effects of hotter summers and heat waves in the population of the United Kingdom: a review of the evidence. Environ Health 16:119. https://doi.org/10.1186/s12940-017-0322-5

Balarabe MK, Sahin M (2020) Metaspace, mobility and resistance: understanding vendors’ movement pattern as a resistive strategy in Kano, Nigeria. J Asian Afr Stud. https://doi.org/10.1177/0021909620905055

Barbier J, Guichard F, Bouniol D et al (2017) Detection of intraseasonal large-scale heat waves: characteristics and historical trends during the Sahelian spring. J Clim 31:61–80. https://doi.org/10.1175/JCLI-D-17-0244.1

Barriopedro D, Fischer EM, Luterbacher J et al (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–224. https://doi.org/10.1126/science.1201224

Batté L, Ardilouze C, Déqué M (2018) Forecasting West African heat waves at subseasonal and seasonal time scales. Mon Weather Rev 146:889–907. https://doi.org/10.1175/MWR-D-17-0211.1

Berman A, Horovitz T, Kaim M, Gacitua H (2016) A comparison of THI indices leads to a sensible heat-based heat stress index for shaded cattle that aligns temperature and humidity stress. Int J Biometeorol 60:1453–1462. https://doi.org/10.1007/s00484-016-1136-9

Black H (2010) When to Warn? Comparing heat indices to evaluate public health risks. Environ Health Perspect 118:A35

Blazejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56:515–535. https://doi.org/10.1007/s00484-011-0453-2

Bourgeois E, Bouniol D, Couvreux F, Guichard F, Marsham JH, Garcia-Carreras L, Birch CE, Parker DJ (2018) Characteristics of mid-level clouds over West Africa. Q J R Meteorol Soc 144:426–442. https://doi.org/10.1002/qj.3215

Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol 56:481–494. https://doi.org/10.1007/s00484-011-0454-1

Campbell S, Remenyi TA, White CJ, Johnston FH (2018) Heatwave and health impact research: a global review. Health Place 53:210–218. https://doi.org/10.1016/j.healthplace.2018.08.017

Ceccherini G, Russo S, Ameztoy I et al (2017) Heat waves in Africa 1981–2015, observations and reanalysis. Nat Hazards Earth Syst Sci 17:115–125. https://doi.org/10.5194/nhess-17-115-2017

Cerne SB, Vera CS, Liebmann B (2007) The nature of a heat wave in Eastern Argentina occurring during SALLJEX. Mon Weather Rev 135:1165–1174. https://doi.org/10.1175/MWR3306.1

Chapman L, Azevedo JA, Prieto-Lopez T (2013) Urban heat and critical infrastructure networks: a viewpoint. Urban Clim 3:7–12. https://doi.org/10.1016/j.uclim.2013.04.001

Cheng Y, Niu J, Gao N (2012) Thermal comfort models: a review and numerical investigation. Build Environ 47:13–22. https://doi.org/10.1016/j.buildenv.2011.05.011

Chen X, Li N, Liu J et al (2019) Global heat wave hazard considering humidity effects during the 21st century. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16091513

Coates L, Haynes K, O’Brien J et al (2014) Exploring 167 years of vulnerability: an examination of extreme heat events in Australia 1844–2010. Environ Sci Policy 42:33–44. https://doi.org/10.1016/j.envsci.2014.05.003

Collins M, Knutti R, Arblaster J et al (2013) Long-term climate change: projections, commitments and irreversibility. Climate change 2013—the physical science basis: contribution of working group I to the fifth assessment report. Intergovernmental Panel on Climate Change, Geneva, pp 1029–1136

Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/home

Couvreux F, Guichard F, Bock O, Campistron B, Lafore J-P, Redelsperger J-L (2010) Synoptic variability of the monsoon flux over West Africa prior to the onset. Q J R Meteorol Soc 136:159–173. https://doi.org/10.1002/qj.473

Cuxart J, Conangla L, Jiménez MA (2015) Evaluation of the surface energy budget equation with experimental data and the ECMWF model in the Ebro Valley. J Geophys Res Atmos 120:1008–1022. https://doi.org/10.1002/2014JD022296

Davidson O, Halsnæs K, Huq S et al (2003) The development and climate nexus: the case of sub-Saharan Africa. Clim Policy 3:S97–S113. https://doi.org/10.1016/j.clipol.2003.10.007

Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA5nterim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

de Freitas CR, Grigorieva EA (2015a) A comprehensive catalogue and classification of human thermal climate indices. Int J Biometeorol 59:109–120. https://doi.org/10.1007/s00484-014-0819-3

de Freitas CR, Grigorieva EA (2015b) Role of acclimatization in weather-related human mortality during the transition seasons of autumn and spring in a thermally extreme mid-latitude continental climate. Int J Environ Res Public Health 12:14974–14987. https://doi.org/10.3390/ijerph121214962

de Freitas CR, Grigorieva EA (2017) A comparison and appraisal of a comprehensive range of human thermal climate indices. Int J Biometeorol 61:487–512. https://doi.org/10.1007/s00484-016-1228-6

de Perez EC, van Aalst M, Bischiniotis K et al (2018) Global predictability of temperature extremes. Environ Res Lett 13:054017. https://doi.org/10.1088/1748-9326/aab94a

Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteor 18:1016–1022. https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2

Ebi KL, Teisberg TJ, Kalkstein LS et al (2004) Heat watch/warning systems save lives: estimated costs and benefits for Philadelphia 1995–98. Bull Am Meteorol Soc 85:1067–1074. https://doi.org/10.1175/BAMS-85-8-1067

Everitt B, Landau S, Leese M, Stahl D (2011) Cluster analysis. Wiley, Hoboken

Fink AH, Knippertz P (2003) An extreme precipitation event in southern Morocco in spring 2002 and some hydrological implications. Weather 58:377–387. https://doi.org/10.1256/wea.256.02

Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3:398–403. https://doi.org/10.1038/ngeo866

Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18:1351–1367. https://doi.org/10.1890/06-0922.1

Fontaine B, Janicot S, Monerie P-A (2013) Recent changes in air temperature, heat waves occurrences, and atmospheric circulation in Northern Africa. J Geophys Res 118:8536–8552. https://doi.org/10.1002/jgrd.50667

Gachon P, Bussières L, Gosselin P, Raphoz M, Bustinza R, Martin P, Dueymes G, Gosselin D, Labrecque S, Jeffers S, Yagouti A (2016) Guide to identifying alert thresholds for heat waves in Canada based on evidence. Co-edited by Université du Québec à Montréal, Environment and Climate Change Canada, Institut National de Santé Publique du Québec, and Health Canada, Montréal, Québec, Canada, p 71.

García-Herrera R, Díaz J, Trigo RM et al (2010) A review of the European summer heat wave of 2003. Crit Rev Environ Sci Technol 40:267–306. https://doi.org/10.1080/10643380802238137

Gasparrini A, Armstrong B (2011) The impact of heat waves on mortality. Epidemiology 22:68–73. https://doi.org/10.1097/EDE.0b013e3181fdcd99

Ghatak D, Zaitchik B, Hain C, Anderson M (2017) The role of local heating in the 2015 Indian Heat Wave. Sci Rep 7:7707. https://doi.org/10.1038/s41598-017-07956-5

Gounou A, Guichard F, Couvreux F (2012) Observations of diurnal cycles over a west african meridional transect: pre-monsoon and full-monsoon seasons. Bound Layer Meteorol 144:329–357. https://doi.org/10.1007/s10546-012-9723-8

Gu G, Adler RF (2004) Seasonal evolution and variability associated with the West African Monsoon System. J Clim 17:3364–3377. https://doi.org/10.1175/1520-0442(2004)017<3364:SEAVAW>2.0.CO;2

Guichard F (2014) Thermodynamic processes shaping Sahelian heat waves: analysis of selected case studies. AGU, Washington

Guichard F, Kergoat L, Mougin E et al (2009) Surface thermodynamics and radiative budget in the Sahelian Gourma: seasonal and diurnal cycles. J Hydrol 375:161–177. https://doi.org/10.1016/j.jhydrol.2008.09.007

Guigma K H, Guichard F, Todd M, Peyrille P, Wang Y (2020) Atmospheric tropical modes are important drivers of Sahelian heatwaves. Clim Dyn (submitted)

Guirguis K, Gershunov A, Tardy A, Basu R (2013) The impact of recent heat waves on human health in California. J Appl Meteorol Climatol 53:3–19. https://doi.org/10.1175/JAMC-D-13-0130.1

Hannachi A, Jolliffe IT, Stephenson DB, Trendafilov N (2006) In search of simple structures in climate: simplifying EOFs. Int J Climatol 26:7–28. https://doi.org/10.1002/joc.1243

Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related techniques in atmospheric science: a review. Int J Climatol 27:1119–1152. https://doi.org/10.1002/joc.1499

Hartmann DL, Tank AMGK, Rusticucci M, et al (2013) Observations: atmosphere and surface. Climate Change 2013 the physical science basis. In: Working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change, pp 159–254. https://doi.org/10.1017/CBO9781107415324.008

Hentschel G (1987) A human biometeorology classification of climate for large and local scales. In Proceedings of WMO/HMO/UNEP ssymposium on climate and human health, Leningrad 1986, vol 1, WCPA—No. 1, WMO. K

Herrmann A, Sauerborn R (2018) General practitioners’ perceptions of heat health impacts on the elderly in the face of climate change—a qualitative study in Baden-Württemberg, Germany. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15050843

Jacques-Coper M, Brönnimann S, Martius O et al (2016) Summer heat waves in southeastern Patagonia: an analysis of the intraseasonal timescale. Int J Climatol 36:1359–1374. https://doi.org/10.1002/joc.4430

Kalapureddy MCR, Lothon M, Campistron B, Lohou F, Saïd F (2010) Wind profiler analysis of the African Easterly Jet in relation with the boundary layer and the Saharan heat-low. Q J R Meteorol Soc 136:77–91. https://doi.org/10.1002/qj.494

Kim Y-M, Kim S, Cheong H-K, Kim E-H (2011) Comparison of temperature indexes for the impact assessment of heat stress on heat-related mortality. Environ Health Toxicol. https://doi.org/10.5620/eht.2011.26.e2011009

Knippertz P (2003) Tropical-extratropical interactions causing precipitation in Northwest Africa: statistical analysis and seasonal variations. Mon Weather Rev 131:3069–3076. https://doi.org/10.1175/1520-0493(2003)131<3069:TICPIN>2.0.CO;2

Knippertz P, Martin JE (2005) Tropical plumes and extreme precipitation in subtropical and tropical West Africa. Q J R Meteorol Soc 131:2337–2365. https://doi.org/10.1256/qj.04.148

Knippertz P, Martin JE (2007) The role of dynamic and diabatic processes in the generation of cut-off lows over Northwest Africa. Meteorol Atmos Phys 96:3–19. https://doi.org/10.1007/s00703-006-0217-4

Knippertz P, Todd MC (2012) Mineral dust aerosols over the Sahara: meteorological controls on emission and transport and implications for modeling. Rev Geophys. https://doi.org/10.1029/2011RG000362

Krstić G (2011) Apparent temperature and air pollution vs elderly population mortality in metro vancouver. PLoS ONE. https://doi.org/10.1371/journal.pone.0025101

Lam CKC, Loughnan M, Tapper N (2013) An exploration of temperature metrics for further developing the heat-health weather warning system in Hong Kong. In: International Scholarly Research Notices. https://www.hindawi.com/journals/isrn/2013/930238/. Accessed 8 Jan 2019

Lavaysse C, Flamant C, Janicot S et al (2009) Seasonal evolution of the West African heat low: a climatological perspective. Clim Dyn 33:313–330. https://doi.org/10.1007/s00382-009-0553-4

Lee H-J, Lee W-S, Yoo JH (2016) Assessment of medium-range ensemble forecasts of heat waves. Atmos Sci Lett 17:19–25. https://doi.org/10.1002/asl.593

Leuning R, van Gorsel E, Massman WJ, Isaac PR (2012) Reflections on the surface energy imbalance problem. Agric For Meteorol 156:65–74. https://doi.org/10.1016/j.agrformet.2011.12.002

Lhotka O, Kyselý J, Plavcová E (2018) Evaluation of major heat waves’ mechanisms in EURO-CORDEX RCMs over Central Europe. Clim Dyn 50:4249–4262. https://doi.org/10.1007/s00382-017-3873-9

Li PW, Chan ST (2000) Application of a weather stress index for alerting the public to stressful weather in Hong Kong. Meteorol Appl 7:369–375. https://doi.org/10.1017/S1350482700001602

Luo M, Lau N-C (2018) Synoptic characteristics, atmospheric controls, and long-term changes of heat waves over the Indochina Peninsula. Clim Dyn 51:2707–2723. https://doi.org/10.1007/s00382-017-4038-6

Macpherson RK (1962) The assessment of the thermal environment. Rev Occup Environ Med 19:151–164. https://doi.org/10.1136/oem.19.3.151

Martens B, Schumacher DL, Wouters H, Muñoz-Sabater J, Verhoest NEC, Miralles DG (2020) Evaluating the surface energy partitioning in ERA5. Geosci Model Dev Discuss. https://doi.org/10.5194/gmd-2019-315

Masato G, Bone A, Charlton-Perez A et al (2015) Improving the health forecasting alert system for cold weather and heat-waves in england: a proof-of-concept using temperature-mortality relationships. PLoS ONE 10:e0137804. https://doi.org/10.1371/journal.pone.0137804

Miralles DG, Teuling AJ, van Heerwaarden CC, Vilà-Guerau de Arellano J (2014) Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat Geosci 7:345–349. https://doi.org/10.1038/ngeo2141

Morabito M, Crisci A, Messeri A et al (2014) Environmental temperature and thermal indices: what is the most effective predictor of heat-related mortality in different geographical contexts? Sci World J 2014:961750. https://doi.org/10.1155/2014/961750

Moron V, Oueslati B, Pohl B et al (2016) Trends of mean temperatures and warm extremes in northern tropical Africa (1961–2014) from observed and PPCA-reconstructed time series. J Geophys Res Atmos 121:5298–5319. https://doi.org/10.1002/2015JD024303

Moron V, Oueslati B, Pohl B, Janicot S (2018) Daily weather types in February–June (1979–2016) and temperature variations in Tropical North Africa. J Appl Meteor Climatol 57:1171–1195. https://doi.org/10.1175/JAMC-D-17-0105.1

Murage P, Hajat S, Kovats RS (2017) Effect of night-time temperatures on cause and age-specific mortality in London. Environ Epidemiol 1:e005. https://doi.org/10.1097/EE9.0000000000000005

Nairn J, Fawcett R (2013) Defining heatwaves: heatwave defined as a heat-impact event servicing all community and business sectors in Australia. Centre for Australian Weather and Climate Research, Sydney, p 96

Nangombe SS, Zhou T, Zhang W, Zou L, Li D (2019) High-temperature extreme events over Africa under 1.5 and 2 °C of global warming. J Geophys Res Atmos 124:4413–4428. https://doi.org/10.1029/2018JD029747

Napoli CD, Barnard C, Prudhomme C, Cloke HL, Pappenberger F (2020) ERA5-HEAT: A global gridded historical dataset of human thermal comfort indices from climate reanalysis. Geosci Data J. https://doi.org/10.1002/gdj3.102

Nguyen H, Thorncroft CD, Zhang C (2011) Guinean coastal rainfall of the West African Monsoon. Q J R Meteorol Soc 137:1828–1840. https://doi.org/10.1002/qj.867

Nicholson SE (2018) Climate of the Sahel and West Africa. Oxford Res Encycl Clim Sci. https://doi.org/10.1093/acrefore/9780190228620.013.510

Olauson J (2018) ERA5: the new champion of wind power modelling? Renew Energy 126:322–331. https://doi.org/10.1016/j.renene.2018.03.056

Oppermann E, Brearley M, Law L et al (2017) Heat, health, and humidity in Australia’s monsoon tropics: a critical review of the problematization of ‘heat’ in a changing climate. Wiley Interdiscip Rev Clim Change 8:e468. https://doi.org/10.1002/wcc.468

Ouedraogo LS, Mundler P (2019) Local Governance and Labor Organizations on Artisanal Gold Mining Sites in Burkina Faso. Sustainability 11:616. https://doi.org/10.3390/su11030616

Oueslati B, Pohl B, Moron V et al (2017) Characterization of heat waves in the Sahel and associated physical mechanisms. J Clim 30:3095–3115. https://doi.org/10.1175/JCLI-D-16-0432.1

Palin EJ, Thornton HE, Mathison CT et al (2013) Future projections of temperature-related climate change impacts on the railway network of Great Britain. Clim Change 120:71–93. https://doi.org/10.1007/s10584-013-0810-8

Panda DK, AghaKouchak A, Ambast SK (2017) Increasing heat waves and warm spells in India, observed from a multiaspect framework. J Geophys Res Atmos 122:3837–3858. https://doi.org/10.1002/2016JD026292

Pappenberger F, Jendritzky G, Staiger H et al (2015) Global forecasting of thermal health hazards: the skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI). Int J Biometeorol 59:311–323. https://doi.org/10.1007/s00484-014-0843-3

Perkins SE (2015) A review on the scientific understanding of heatwaves—their measurement, driving mechanisms, and changes at the global scale. Atmos Res 164–165:242–267. https://doi.org/10.1016/j.atmosres.2015.05.014

Perkins SE, Alexander LV (2012) On the measurement of heat waves. J Clim 26:4500–4517. https://doi.org/10.1175/JCLI-D-12-00383.1

Perkins-Kirkpatrick SE, Gibson PB (2017) Changes in regional heatwave characteristics as a function of increasing global temperature. Sci Rep 7:12256. https://doi.org/10.1038/s41598-017-12520-2

Perry A (2000) Impacts of climate change on tourism in the mediterranean: adaptive responses. Social Science Research Network, Rochester

Potter SH, Kreft PV, Milojev P et al (2018) The influence of impact-based severe weather warnings on risk perceptions and intended protective actions. Int J Disaster Risk Reduct 30:34–43. https://doi.org/10.1016/j.ijdrr.2018.03.031

Quak E (2018) Drivers, challenges and opportunities for job creation in the Sahel: K4D helpdesk report 455. Institute of Development Studies, Brighton

Ramon J, Lledó L, Torralba V, Soret A, Doblas-Reyes FJ (2019) What global reanalysis best represents near-surface winds? Q J R Meteorol Soc 145:3236–3251. https://doi.org/10.1002/qj.3616

Richman MB (1986) Rotation of principal components. J Climatol 6:293–335. https://doi.org/10.1002/joc.3370060305

Roberts AJ, Marsham JH, Knippertz P (2014) Disagreements in low-level moisture between (re)analyses over summertime West Africa. Mon Weather Rev 143:1193–1211. https://doi.org/10.1175/MWR-D-14-00218.1

Roberts AJ, Marsham JH, Knippertz P et al (2017) New Saharan wind observations reveal substantial biases in analysed dust-generating winds. Atmos Sci Lett 18:366–372. https://doi.org/10.1002/asl.765

Robinson PJ (2001) On the definition of a heat wave. J Appl Meteorol 40:762–775. https://doi.org/10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2

Rohat G, Flacke J, Dosio A, Dao H, van Maarseveen M (2019) Projections of human exposure to dangerous heat in African cities under multiple socioeconomic and climate scenarios. Earth’s Future 7:528–546. https://doi.org/10.1029/2018EF001020

Sambou M-JG, Janicot S, Pohl B, Badiane D, Dieng AL, Gaye A (2020) Heat wave occurrences over Senegal during spring: regionalization and synoptic patterns. Int J Climatol 40:440–457. https://doi.org/10.1002/joc.6220

Schär C (2016) The worst heat waves to come. Nat Clim Change 6:128–129. https://doi.org/10.1038/nclimate2864

Schoof JT, Ford TW, Pryor SC (2017) Recent changes in US regional heat wave characteristics in observations and reanalyses. J Appl Meteor Climatol 56:2621–2636. https://doi.org/10.1175/JAMC-D-16-0393.1

Sfîcă L, Croitoru A-E, Iordache I, Ciupertea A-F (2017) Synoptic conditions generating heat waves and warm spells in Romania. Atmosphere 8:50. https://doi.org/10.3390/atmos8030050

Smith TT, Zaitchik BF, Gohlke JM (2013) Heat waves in the United States: definitions, patterns and trends. Clim Change 118:811–825. https://doi.org/10.1007/s10584-012-0659-2

Smoyer-Tomic KE, Kuhn R, Hudson A (2003) Heat wave hazards: an overview of heat wave impacts in Canada. Nat Hazards 28:465–486. https://doi.org/10.1023/A:1022946528157

Souch C, Grimmond S (2006) Applied climatology: urban climate. Prog Phys Geogr Earth Environ 30:270–279. https://doi.org/10.1191/0309133306pp484pr

Steadman RG (1979) The assessment of sultriness. Part I: a temperature-humidity index based on human physiology and clothing science. J Appl Meteorol 18:861–873. https://doi.org/10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2

Steadman RG (1994) Norms of apparent temperature in Australia. Aust Meteorol Mag 43:1–16

Thorncroft CD, Nguyen H, Zhang C, Peyrillé P (2011) Annual cycle of the West African monsoon: regional circulations and associated water vapour transport. Q J R Meteorol Soc 137:129–147. https://doi.org/10.1002/qj.728

Tschakert P (2007) Views from the vulnerable: understanding climatic and other stressors in the Sahel. Global Environ Change 17:381–396. https://doi.org/10.1016/j.gloenvcha.2006.11.008

Weyrich P, Scolobig A, Bresch DN, Patt A (2018) Effects of impact-based warnings and behavioral recommendations for extreme weather events. Weather Clim Soc 10:781–796. https://doi.org/10.1175/WCAS-D-18-0038.1

Wilkinson E, Weingärtner L, Choularton R et al (2018) Forecasting hazards, averting disasters: implementing forecast-based early action at scale. Overseas Development Institute (ODI), London

Willett KM, Sherwood S (2012) Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. Int J Climatol 32:161–177. https://doi.org/10.1002/joc.2257

World Meteorological Organization and World Health Organization (2015) Heatwaves and health: guidance on warning-system development. WMO-No. 1142, Geneva.

World Meteorological Organization (2015) Guidelines on multi-hazard impact-based forecast and warning services. WMO-No.1150, Geneva

Woltering L, Pasternak D, Ndjeunga J (2011) The African market garden: the development of a low-pressure drip irrigation system for smallholders in the sudano sahel. Irrig Drain 60:613–621. https://doi.org/10.1002/ird.610

Xu Z, FitzGerald G, Guo Y et al (2016) Impact of heatwave on mortality under different heatwave definitions: a systematic review and meta-analysis. Environ Int 89–90:193–203. https://doi.org/10.1016/j.envint.2016.02.007

Xu Z, Crooks JL, Black D et al (2017) Heatwave and infants’ hospital admissions under different heatwave definitions. Environ Pollut 229:525–530. https://doi.org/10.1016/j.envpol.2017.06.030

Zhang K, Rood RB, Michailidis G et al (2012) Comparing exposure metrics for classifying “dangerous heat” in heat wave and health warning systems. Environ Int 46:23–29. https://doi.org/10.1016/j.envint.2012.05.001