Characteristics and environmental aspects of slag: A review

Applied Geochemistry - Tập 57 - Trang 236-266 - 2015
Nadine M. Piatak1, Michael B. Parsons2, Robert R. Seal1
1U.S. Geological Survey, 954 National Center, Reston, VA 20176, United States
2Geological Survey of Canada, 1 Challenger Drive, Dartmouth, Nova Scotia, B2Y 4A2, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ali, 2008, Evaluation of silicate iron slag amendment on reducing methane emission from flood water rice farming, Agric. Ecosyst. Environ., 128, 21, 10.1016/j.agee.2008.04.014

Ali, 2013, Potentials of copper slag utilization in the manufacture of ordinary Portland cement, Adv. Cem. Res., 25, 208, 10.1680/adcr.12.00004

Alpers, 1999, Geochemical modeling of water–rock interactions in mining environments, vol. 6A, 289

Altepeter, 1992, Proposed treatment of neutral Leach residue at Big River Zinc, 449

Álvarez-Valero, 2008, Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian Peninsula): evidence from a chemical and mineralogical characterization, Environ. Geol., 55, 1797, 10.1007/s00254-007-1131-x

Álvarez-Valero, 2009, Prediction of the environmental impact of modern slags: a petrological and chemical comparative study with Roman age slags, Am. Mineral., 94, 1417, 10.2138/am.2009.3171

Anand, 1980, Recovery of metal values from copper converter and smelter slags by ferric chloride leaching, Hydrometallurgy, 5, 355, 10.1016/0304-386X(80)90025-0

Anderson, 1991, Soil and leaf nutrient interactions following application of calcium silicate slag to sugarcane, Nutr. Cycl. Agroecosyst., 30, 9

Baker, 1998, Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems, Environ. Sci. Technol., 32, 2308, 10.1021/es970934w

Barca, 2012, Phosphate removal from synthetic and real wastewater using steel slags produced in Europe, Water Res., 46, 2376, 10.1016/j.watres.2012.02.012

Barna, 2004, Leaching assessment of road materials containing primary lead and zinc slags, Waste Manage. (Oxford), 24, 945, 10.1016/j.wasman.2004.07.014

Bäverman, 1997, Serial batch tests performed on municipal solid waste incineration bottom ash and electric arc furnace slag, in combination with computer modeling, Waste Manage. Res., 15, 55, 10.1177/0734242X9701500105

Bayless, 2003, Mineral precipitation and dissolution at two slag-disposal sites in northwestern Indiana, USA, Environ. Geol., 45, 252, 10.1007/s00254-003-0875-1

Bayless, E.R., Greeman, T.K., Harvey, C.C., 1998, Hydrology and Geochemistry of a Slag-affected Aquifer and Chemical Characteristics of Slag-Affected Ground Water, Northwestern Indiana and Northeastern Illinois: U.S. Geological Survey, Water-Resources Investigations, Report 97-4198, 67p.

Bayless, 2004, Use of 87Sr/86Sr and δ11B to identify slag-affected sediment in southern Lake Michigan, Environ. Sci. Technol., 38, 1330, 10.1021/es0347843

Bethke, 2008

Blowes, D.W., Bain, J.G., Smyth, D., McGregor, R., Ludwig, P., Wilkens, J.A., Ptacek, C.J., Spink, L., 2005, Treatment of Arsenic Using Permeable Reactive Barriers: Geological Society of America Annual Meeting Program with Abstracts, vol. 37, no. 7, p. 102.

Bosso, 2008, Bioaccessible lead in soils, slag, and mine wastes from an abandoned mining district in Brazil, Environ. Geochem. Health, 30, 219, 10.1007/s10653-007-9110-4

Bowden, 2009, Phosphorus removal from waste waters using basic oxygen steel slag, Environ. Sci. Technol., 43, 2476, 10.1021/es801626d

Brandt, 2009

Bril, 2008, Secondary phases from the alteration of a pile of zinc-smelting slag as indicators of environmental conditions: An example from Świętochłowice, Upper Silesia, Poland, Can. Mineral., 46, 125, 10.3749/canmin.46.5.1235

Butler, 1977, Al-rich pyroxene and melilite in a blast-furnace slag and a comparison with the Allende meteorite, Mineral. Mag., 41, 439, 10.1180/minmag.1977.041.320.11

Carroll, 1988, Sulfur speciation in hydrous experimental glasses of varying oxidation states: results from measured wavelength shifts of sulfur X-rays, Am. Mineral., 73, 845

Canadian Council of Ministers of the Environment (CCME), 2007. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Summary Tables. Updated September, 2007. In: Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.

CDM Fed Programs Corporation, 1993. Draft Work Plan for Waste Compatibility Evaluation Study – Sharon Steel Tailings Site/Midvale Slag Site. USEPA, Midvale, Utah. Contract No. 68-W9-0021.

Chang, 2013, Chemical stabilization of cadmium in acidic soil using alkaline argronomic and industrial by-products, J. Environ. Sci. Health, Part A, 48, 1748, 10.1080/10934529.2013.815571

Chaudhuri, 1993, Mineralogical characterization of old Harz Mountain slags, Can. Metall. Q., 32, 1, 10.1179/cmq.1993.32.1.1

Chaurand, 2006, Speciation of Cr and V within BOF steel slag reused in road constructions, J. Geochem. Explor., 88, 10, 10.1016/j.gexplo.2005.08.006

Chaurand, 2007, Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach, J. Hazard. Mater., B139, 537, 10.1016/j.jhazmat.2006.02.060

Chirikure, 2010, The technology of tin smelting in the Rooiberg Valley, Limpopo Province, South Africa, ca. 1650–1850 CE, J. Archaeol. Sci., 37, 1656, 10.1016/j.jas.2010.01.026

Costagliola, 2008, Impact of ancient metal smelting on arsenic pollution in the Pecora River Valley, Southern Tuscany, Italy, Appl. Geochem., 23, 1241, 10.1016/j.apgeochem.2008.01.005

Cottrell, 1995

Cravotta III, C.A., 2005. Assessment of Characteristics and Remedial Alternatives for Abandoned Mine Drainage: Case Study at Staple Bend Tunnel Unit of Allegheny Portage Railroad National Historic Site, Cambria Country, Pennsylvania, 2004: U.S. Geological Survey Open-File, Report 2005-1283, 52p.

Crock, J.G., Arbogast, B.F., Lamothe, P.J., 1999. Laboratory methods for the analysis of environmental samples. In: Plumlee, G.S., Logsdon, M.J. (Eds.), The Environmental Geochemistry of Mineral Deposits, Part A: Processes, Techniques, and Health Issues: Reviews in Economic Geology, vol. 6A, pp. 265–287 (Chapter 13).

De Andrade Lima, 2011, Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil, J. Hazard. Mater., 189, 692, 10.1016/j.jhazmat.2011.02.091

De Angelis, 2012, Reuse of slags containing lead and zinc as aggregate in a portland cement matrix, J. Solid Waste Technol. Manage., 38, 117, 10.5276/JSWTM.2012.17

De Windt, 2011, Kinetics of steel slag leaching: batch tests and modeling, Waste Manage. (Oxford), 31, 225, 10.1016/j.wasman.2010.05.018

Dimitrova, 2002, Use of granular slag columns for lead removal, Water Res., 36, 4001, 10.1016/S0043-1354(02)00120-3

Douglas, 1986, Characterization of granulated and pelletized blast furnace slag, Cem. Concr. Res., 16, 662, 10.1016/0008-8846(86)90039-6

Douglas, 2012, Productive use of steelmaking by-product in environmental applications (I): mineralogy and major and trace element geochemistry, Miner. Eng., 35, 49, 10.1016/j.mineng.2012.04.013

Drizo, 2002, Phosphorus saturation potential: a parameter for estimating the longevity of constructed wetland systems, Environ. Sci. Technol., 36, 4642, 10.1021/es011502v

Drizo, 2006, Phosphorus removal by electric arc furnace steel slag and serpentinite, Water Res., 40, 1547, 10.1016/j.watres.2006.02.001

Ettler, 2000, Zinc partitioning between glass and silicate phases in historical and modern lead–zinc metallurgical slags from the Příbram district, Czech Republic, Comptes Rendus de l’Académie des Sciences, Sciences de la Terre et des Planètes, 331, 245

Ettler, 2001, Primary phases and natural weathering of old lead–zinc pyrometallurgical slag from Přίbram, Czech Republic, Can. Mineral., 39, 873, 10.2113/gscanmin.39.3.873

Ettler, 2001, Metallurgical slag behaviour in extreme conditions: surface leaching and metal mobility, Ecole Nationale Superieure des Mines de Paris Mémoire des Sciences de la Terre, 40, 81

Ettler, 2002, Leaching of polished sections: an integrated approach for studying the liberation of heavy metals from lead–zinc metallurgical slags, Bull. Soc. Geol. Fr., 173, 161, 10.2113/173.2.161

Ettler, 2003, Mineralogical control on inorganic contaminant mobility in leachate from lead–zinc metallurgical slag: experimental approach and long-term assessment, Mineral. Mag., 67, 1269, 10.1180/0026461036760164

Ettler, 2004, Leaching of lead metallurgical slag in citric solutions: Implications for disposal and weathering in soil environments, Chemosphere, 57, 567, 10.1016/j.chemosphere.2004.07.022

Ettler, 2005, The leaching behaviour of lead metallurgical slag in high-molecular-weight (HMW) organic solutions, Mineral. Mag., 69, 737, 10.1180/0026461056950284

Ettler, 2009, Mineralogy of medieval slag from lead and silver smelting (Bohutín, Příbram District, Czech Republic): towards estimates of historical smelting conditions, Archaeometry, 51, 987, 10.1111/j.1475-4754.2008.00455.x

Ettler, 2009, Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia, Appl. Geochem., 24, 1, 10.1016/j.apgeochem.2008.10.003

Ettler, 2012, Reliability of chemical microanalyses for solid waste materials, J. Hazard. Mater., 221–222, 298, 10.1016/j.jhazmat.2012.04.015

European Committee for Standardization, 2002. Final Draft prEN 12457–2. Characterization of Waste Leaching-compliance Test of Leaching of Granular Waste Material and Sludges – Part 2: One-stage Batch Test at a Liquid to Solid Ration of 10 l/kg for Materials With Particle Size Below 4 mm (With or Without Particle Reduction), Czech Standard Institute, Prague.

European Slag Association (EUROSLAG), 2003. Granulated Blastfurnace Slag, Technical Leaflet No. 1, 4p. <http://www.euroslag.org/fileadmin/_media/images/Research/FACT_SHEETS/LeafletGBS.pdf> (accessed May 2013).

European Slag Association (EUROSLAG), 2006. Legal Status of Slags, Position Paper, January 2006, 15p. <http://www.euroslag.org/fileadmin/_media/images/Status_of_slag/Position_paper_Jan_2006.pdf> (accessed May 2013).

Fällman, A.-M., Hartlén, J., 1994. Leaching of slags and ashes – controlling factors in field experiments versus laboratory tests. In: Goumans, J.J.J.M., van de Sloot, H.A., Aalbers, Th.G. (Eds.), Environmental Aspects of Construction with Waste Materials: Studies in Environmental Science, vol. 60, pp. 39–54.

Federal Highway Administration (FHWA), U.S. Department of Transportation, 1997.User Guidelines for Waste and Byproduct Materials in Pavement Construction: FHWA-RD-97-148, McLean, VA, USA. <http://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/> (accessed February 2012).

Gahan, 2009, Comparative study on different steel slags as neutralising agent in bioleaching, Hydrometallurgy, 95, 190, 10.1016/j.hydromet.2008.05.042

Ganne, 2006, Leachablity of heavy metals and arsenic from slags of metal extraction industry at Angleur (eastern Belgium), Sci. Total Environ., 356, 69, 10.1016/j.scitotenv.2005.03.022

Garrels, R.M., Mackenzie, F.T., 1967, Origin of the chemical compositions of some springs and lakes. In: Equilibrium Concepts in Natural Waters, Advances in Chemistry Series 67: American Chemical Society, Washington, DC, pp. 222–242 (Chapter 10).

Gbor, 2000, Behaviour of Co and Ni during aqueous sulphur dioxide leaching of nickel smelter slag, Hydrometallurgy, 57, 13, 10.1016/S0304-386X(00)00090-6

Gbor, 2006, Dissolution behavior of Fe Co, and Ni from non-ferrous smelter slag in aqueous sulphur dioxide, Hydrometallurgy, 81, 130, 10.1016/j.hydromet.2005.10.007

Gee, 1997, Mineralogy and weathering processes in historical smelting slag and their effect on the mobilization of lead, J. Geochem. Explor., 58, 249, 10.1016/S0375-6742(96)00062-3

Glynn, P., Brown, J., 1996. Reactive transport modeling of acidic metal-contaminated ground water at a site with sparse spatial information. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (Eds.), Reactive Transport in Porous Media: Mineralogical Society of America, Reviews in Mineralogy, vol. 34, pp. 377–438 (Chapter 9).

Gorai, 2003, Characteristics and utilization of copper slag – a review, Resour. Conserv. Recycl., 39, 299, 10.1016/S0921-3449(02)00171-4

Hadjsadok, 2012, Durability of mortar and concretes containing slag with low hydraulic activity, Cement Concr. Compos., 34, 671, 10.1016/j.cemconcomp.2012.02.011

Hanski, 2009, Reduction of aqueous hexavalent chromium by steel slag: abstracts of the 19th annual V. M. Goldschmidt conference, Geochim. Cosmochim. Acta, 73, A492

Hanski, 2007, Removal of uranium, arsenic and phosphorus from aqueous solutions using steel slag: Goldschmidt conference abstracts, Geochim. Cosmochim. Acta, 71, A379

Heimann, 2010, Mineralogical study of precolonial (1650–1850 CE) tin smelting slags from Rooiberg, Limpopo Province, South Africa, Eur. J. Mineral., 22, 751, 10.1127/0935-1221/2010/0022-2055

Helgeson, 1968, Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—I. Thermodynamic relations, Geochim. Cosmochim. Acta, 32, 853, 10.1016/0016-7037(68)90100-2

Ishimaru, 2008, Nickel enrichment in mantle olivine beneath a volcanic front, Contrib. Miner. Petrol., 156, 119, 10.1007/s00410-007-0277-6

Ivanov, I.T., 2000. Phase composition of metallurgical slags in Bulgaria. In: Rammlmair, D., Mederer, J., Oberthür, Th., Heimann, R.B., Pentinghaus, H. (Eds.), Proceedings of the Sixth International Congress on Applied Mineralogy ICAM 2000, Göttingen, Germany, July 17–19, 2000.

Jambor, J.L., 2003. Mine-waste mineralogy and mineralogical perspectives of acid–base accounting. In: Jambor, J.L., Blowes, D.W., Ritchie, A.I.M. (Eds.), Environmental Aspects of Mine Wastes, Short Course Series, Mineralogical Association of Canada, vol. 31, pp. 117–145.

Johnson, E.A., Oden, L.L., Sanker, P.E., 1982. Results of E.P.A. Extraction Procedure Toxicity Test Applied to Copper Reverberatory Slags: U.S. Bureau of Mines Report of Investigation 8648, 16p.

Kierczak, 2011, Mineralogy and composition of historical Cu slags from the Rudawy Janowickie Mountains, Southwestern Poland, Can. Mineral., 49, 1281, 10.3749/canmin.49.5.1281

Kierczak, 2009, The mineralogy and weathering of slag produced by the smelting of the lateritic Ni ores, Szklary, Southwestern Poland, Can. Mineral., 47, 557, 10.3749/canmin.47.3.557

Kierczak, 2013, Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland), J. Geochem. Explor., 124, 183, 10.1016/j.gexplo.2012.09.008

Kourounis, 2007, Properties and hydration of blended cements with steelmaking slag, Cem. Concr. Res., 37, 815, 10.1016/j.cemconres.2007.03.008

Kucha, 1996, Primary minerals of Zn–Pb mining and metallurgical dumps and their environmental behavior at Plombiéres, Belgium, Environ. Geol., 27, 1, 10.1007/BF00770598

Kwon, J.-S., Yun, Seong-Taek, Jo, H.-Y., Jung, S.-H., 2008. Geochemical Processes Including Sorption and Incorporation of Heavy Metals and Arsenic by Scoria and Steel Slag: Abstracts of the 18th Annual V. M. Goldschmidt Conference, Geochimica et Cosmochimica Acta, vol. 72, no. 12S, p. A507.

Lagos, G.E., Luraschi, A., 1997. Toxicity Characteristic Leaching Procedure (TCLP) Applied to Chilean Primary Copper Slags: Transactions of the Institution of Mining and Metallurgy Section C—Mineral Processing and Extractive Metallurgy, vol. 106, pp. C95–C97.

Leonard, R.P., Ziegler, R.C., Brown, W.R., Yang, J.Y., Reif, H.C., 1977. Assessment of Industrial Hazardous Waste Practices in the Metal Smelting and Refining Industry, vol. IV, Appendices: U.S. Environmental Protection Agency, EPA/530/SW-145c.4, pp. 31–39.

Levin, 1964

Lewis, D.W., 1982. Properties and Uses of Iron and Steel Slags: National Slag Association (NSA) MF 182-6, Presented at the Symposium on Slag national Institute for Transport and Road Research South Africa, February, 1982. <http://www.nationalslag.org/archive/legacy/nsa_182-6_properties_and_uses_slag.pdf> (updated 1992) (accessed February 2012).

Li, 2009, High pressure oxidative acid leaching of nickel smelter slag, characterization of feed and residue, Hydrometallurgy, 97, 185, 10.1016/j.hydromet.2009.03.007

Lopez, 1997, Physico-chemical and mineralogical properties of EAF and AOD slags: associazione Italiana de, Metallurgia, 417

LopezGomez, F.A., Aldecoa, R., Fernandez Prieto, M.A., Rodrigues, J.M., 1999. Preparation of NPK Fertilizers from Ferrous-Metallurgy. Simoes C Eur Commun [Rep] 18616, pp. 1–57.

Lottermoser, 2002, Mobilization of heavy metals from historical smelting slag dumps, north Queensland, Australia, Mineral. Mag., 66, 475, 10.1180/0026461026640043

Lottermoser, 2005, Evaporative mineral precipitates from the historical smelting slag dump, Río Tinto, Spain, Neues Jahrbuch für Mineralogie-Abhandlungen, 181, 183, 10.1127/0077-7757/2005/0016

Mahé-Le Carlier, 2000, Natural weathering of archaeo-metallurgical slags: an analog for present day vitrified wastes, Earth Planet. Sci., 330, 179

Manasse, 2001, The copper slags of the Capattoli Valley, Campiglia Marittima, Italy, Eur. J. Mineral., 13, 949, 10.1127/0935-1221/2001/0013/0949

Mandin, D., van der Sloot, H.A., Gervais, C., Barna, R., Mehu, J., 1997. Valorization of lead–zinc primary smelters slags. In: Goumans, J.J.J., Senden, G.J., van der Sloot, H.A. (Eds.), Waste Materials in Construction: Putting Theory into Practice. Studies in Environmental Science, vol. 71, pp. 617–630.

Manz, 1997, The environmental hazard caused by smelter slags from the Sta, Maria de la Paz mining district in Mexico: Environmental Pollution, 98, 7

Maslehuddin, 2003, Comparison of properties of steel slag and crushed limestone aggregate concretes, Constr. Build. Mater., 17, 105, 10.1016/S0950-0618(02)00095-8

Matthes, S.A., 1980. Rapid Low-cost Analysis of a Copper Slag for 13 Elements by Flame Atomic Absorption Spectroscopy: U.S. Bureau of Mines Report of Investigations 8484, 8p.

May, A., Peterson, J.B., 1991. Assessment of lead slag landfill site and the use of a computational program for chemical species. In: Proceedings of the Symposium on Environmental Management for the 1990’s, Denver, Colorado, February 25–28, pp. 217–223.

Milačič, 2011, Environmental impacts of asphalt mixes with electric arc furnace steel slag, J. Environ. Qual., 40, 1153, 10.2134/jeq2010.0516

Morrison, 2007, Preliminary findings of chemistry and bioaccessibility in base metal smelter slags, Sci. Total Environ., 382, 30, 10.1016/j.scitotenv.2007.03.034

Morrison Knudsen Corporation, 1992. Final Report for Lead Slag Pile Remedial Investigation at the California Gulch Site, Leadville, Colorado. Denver & Rio Grande Western Railroad Company.

Muhmood, 2009, Cementitious and pozzolanic behavior of electric arc furnace steel slags, Cem. Concr. Res., 39, 102, 10.1016/j.cemconres.2008.11.002

Narayan, C., 1995. Report on the Analysis of Iron Slag Samples from Saugus Iron Works, MA Using Rutherford Backscattering Spectroscopy (RBS) and Proton Induced X-ray Emission (PIXE) Techniques. University of Massachusetts Lowell Radiation Laboratory, 15p.

Navarro, 2008, Metal mobilization from base-metal smelting slag dumps in Sierra Almagrera (Almería, Spain), Appl. Geochem., 23, 895, 10.1016/j.apgeochem.2007.07.012

Navarro, 2010, Physico-chemical characterization of steel slag, Study of Its Behavior Under Simulated Environmental Conditions: Environmental Science and Technology, 44, 5383

Negim, 2010, Effect of basic slag addition on soil properties, growth and leaf mineral composition of bean sin a Cu-contaminated soil, Soil Sediment Contam., 19, 174, 10.1080/15320380903548508

Nelson, T., 1993. Data on Slag Samples Collected from the Midvale Slag Site, Midvale, Utah: Sverdup Corporation Memorandum No. 10865R00(1.1)-91 to M. Strieby, U.S. Environmental Protection Agency Region VIII.

Nordstrom, D.K., Alpers, C.N., 1999. Geochemistry of acid mine waters. In: Plumlee, G.S., Logsdon, M.J. (Eds.), The Environmental Geochemistry of Mineral Deposits, Part A: Processes, Techniques, and Health Issues. Reviews in Economic Geology, vol. 6A. Society of Economic Geologists, Littleton, CO, pp. 133–160 (Chapter 6).

National Slag Association (NSA), 2009. Slag’s Ain’t Slag’s. <http://www.nationalslag.org/appmatrix.htm> (accessed February 2012).

Ochola, 2004, Establishing and elucidating reduction as the removal mechanism of Cr(VI) by reclaimed limestone residual RLR (modified steel slag), Environ. Sci. Technol., 38, 6161, 10.1021/es049670l

Oh, 2012, Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag, J. Hazard. Mater., 213–214, 147, 10.1016/j.jhazmat.2012.01.074

Paris, 2001, The valence and speciation of sulfur in glasses by X-ray absorption spectroscopy, Can. Mineral., 39, 331, 10.2113/gscanmin.39.2.331

Park, 1994, Smelting reduction for vanadium-recovery from LD-slag (I), Kor. J. Met. Mater., 32, 982

Parkhurst, 1993, Geochemical models, 199

Parsons, M.B., 2001. Geochemical and Mineralogical Controls on Trace Element Release from Base-metal Smelter Slags. Unpublished Ph.D. Thesis, Stanford University, Stanford, California, 307p.

Parsons, 2001, Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump, California, Appl. Geochem., 16, 1567, 10.1016/S0883-2927(01)00032-4

Partymiller, K., 1992. Horsehead Resource Development Company, Inc. Flame Reactor Technology: Applications Analysis Report. Environmental Protection Agency, EPA/540/A5-91/005.

Pérez-López, 2008, Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos Mine (Iberian Pyrite Belt), Appl. Geochem., 23, 3452, 10.1016/j.apgeochem.2008.08.005

Pérez-López, 2010, Rare earth element geochemistry of sulphide weathering in the São Domingos mine area (Iberian Pyrite Belt): a proxy for fluid–rock interaction and ancient mining pollution, Chem. Geol., 276, 29, 10.1016/j.chemgeo.2010.05.018

Piatak, 2010, Mineralogy and the release of trace elements from slag from the Hegeler Zinc smelter, Illinois (USA), Appl. Geochem., 25, 302, 10.1016/j.apgeochem.2009.12.001

Piatak, 2012, Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA, Appl. Geochem., 27, 623, 10.1016/j.apgeochem.2011.12.011

Piatak, N.M., Seal II, R.R., 2012b. Leaching tests to characterize ferrous and nonferrous slag drainage chemistry. In: Price, W.A., Hogan, C., Tremblay, G. (Eds.), Proceedings from the Ninth International Conference on Acid Rock Drainage, Ottawa, Canada, 12p.

Piatak, N.M., Seal II, R.R., 2014. Challenges of quantifying the partitioning of metals within solid phases: an example of zinc in slag from the Hegeler Zinc smelter, Illinois. In: McLemore, V.T, Smith, K.S., Russell, C.C. (Eds.), Environmental Sampling and Monitoring for the Mine-Life Cycle, Appendix 5—Case Studies of Sampling and Monitoring: Eaglewood, CO, Society for Mining, Metallurgy, and Exploration, Inc.

Piatak, 2004, Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites, Appl. Geochem., 19, 1039, 10.1016/j.apgeochem.2004.01.005

Proctor, 2000, Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags, Environ. Sci. Technol., 34, 1576, 10.1021/es9906002

Puziewicz, 2007, Primary phases in pyrometallurgical slags from a zinc-smelting waste dump, Świętochłowice, Upper Silesia, Poland, Can. Mineral., 45, 1189, 10.2113/gscanmin.45.5.1189

Qiu, 2012, Attenuation of metal bioavailabilty in acidic multi-metal contaminated soil treated with fly ash and steel slag, Pedosphere, 22, 544, 10.1016/S1002-0160(12)60039-3

Rai, 2002, Metallurgical slag as a component in blended cement, Constr. Build. Mater., 16, 489, 10.1016/S0950-0618(02)00046-6

Rao, 1992, Flotation of copper from converter slags, J. Mines Met. Fuels, 40, 131

Reuer, M.K., Bower, N.W., Koball, J.H., Hinostroza, E., De la, Torre Marcas, M.E., Hurtado Surichaqui, A.H., Echevarria, S., 2012. Lead, Arsenic, and Cadmium Contamination and Its Impact on Children’s Health in La Oroay, Peru. International Scholarly Research Network, Public Health, vol. 2012, 12p.

Rizza, I.L., Farthing, D.J., 2007. Catch the Rainbow: Geochemical Analysis of Colored Slag from Ironville, Adirondack State Park, New York: Geological Society of America, Abstracts with Programs, vol. 39, no. 6, p. 320.

Roadcap, 1994, Shallow ground-water chemistry in the Lake Calumet Area, Chicago, Illinois, 253

Roadcap, 2005, Geochemistry of extremely alkaline (pH>12) ground water in slag-fill aquifers, Ground Water, 43, 806, 10.1111/j.1745-6584.2005.00060.x

Robbins, 1983, Availability of toxic metals from non-ferrous metallurgical slags using various procedures, vol. 2, 923

Rosado, 2008, Weathering of S. Domingos (Iberian Pyritic Belt) abandoned mine slags, Mineral. Mag., 72, 489, 10.1180/minmag.2008.072.1.489

Rosenqvist, 2004

Roy, 2009, Sulfur speciation in granulated blast furnace slag: an X-ray absorption spectroscopic investigation, Cem. Concr. Res., 39, 659, 10.1016/j.cemconres.2009.05.007

Sáez, 2003, The extractive metallurgy of copper from Cabezo Juré, Huelva, Spain: chemical and mineralogical study of slags dated to the third millennium B.C, Can. Mineral., 41, 627, 10.2113/gscanmin.41.3.627

Sánchez, 2013, Physiochemical characterization of copper slag and alternatives of friendly environmental management, J. Min. Metall., Sect. B – Metall., 49, 161, 10.2298/JMMB120814011S

Sato, 1977, Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation, Lithos, 10, 113, 10.1016/0024-4937(77)90037-8

Scheinert, 2009, Geochemical investigations of slags from the historical smelting in Freiberg, Erzgebirge (Germany), Chem. Erde, 69, 81, 10.1016/j.chemer.2008.03.001

Scott, 1986, The chemistry and mineralogy of some granulated and pelletized blast furnace slags, Mineral. Magaz., 50, 141, 10.1180/minmag.1986.050.355.19

Seal II, R.R., Kiah, R.G., Piatak, N.M., Besser, J.M., Coles, J.F., Hammarstrom, J.M., Argue, D.M., Levitan, D.M., Deacon, J.R., Ingersoll, C.G., 2010. Aquatic Assessment of the Ely Copper Mine Superfund Site, Vershire, Vermont: U.S. Geological Survey Scientific Investigation, Report 2010-5084, 150p.

Seignez, 2007, Effect of Pb-rich and Fe-rich entities during alteration of a partially vitrified metallurgical waste, J. Hazard. Mater., 149, 418, 10.1016/j.jhazmat.2007.04.007

Seignez, 2008, Leaching of lead metallurgical slags and pollutant mobility far from equilibrium conditions, Appl. Geochem., 23, 3699, 10.1016/j.apgeochem.2008.09.009

Severin, 2011, Early metal smelting in Aksum, Ethiopia: copper or iron?, Eur. J. Mineral., 23, 981, 10.1127/0935-1221/2011/0023-2167

Shacklette, H.T., Boerngen, J.G., 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. U.S. Geological Survey Professional Paper 1270, 104p.

Shelley, 1975, Possible methods for recovering copper from waste smelter slags by leaching, Trans. Inst. Min. Metall. Sect. C—Mineral Process. Extract. Metall., 84, 1

Shen, 2009, Investigation on the application of steel slag-fly ash–phosphogypsum solidified material as road base material, J. Hazard. Mater., 164, 99, 10.1016/j.jhazmat.2008.07.125

Shibayama, 2010, Treatment of smelting residues for arsenic removal and recovery of copper using pyro-hydrometallurgical process, J. Hazard. Mater., 181, 1016, 10.1016/j.jhazmat.2010.05.116

Sidenko, 2001, Mobility of heavy metals in self-burning waste heaps of the zinc smelting plant in Belovo (Kemerovo Region, Russia), J. Geochem. Explor., 74, 109, 10.1016/S0375-6742(01)00178-9

Simmons, 2002, Use of steel slag leach beds for the treatment of acid mine drainage, Mine Water Environ., 21, 91, 10.1007/s102300200024

Singh, 2008, Performance evaluation of cement stabilized fly ash-GBFS mixes as a highway construction material, Waste Manage. (Oxford), 28, 1331, 10.1016/j.wasman.2007.09.017

Sloto, R.A., Reif, A.G., 2011. Distribution of Trace Metals at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania: U.S. Geological Survey Scientific Investigations, Report 2011-5014, 90p.

Sobanska, 2000, Alteration in soils of slag particles resulting from lead smelting, Earth Planet. Sci., 331, 271

Srivastava, 2005, Controlling NOx emission from industrial sources, Environ. Prog., 24, 181, 10.1002/ep.10063

Strömberg, 1994, Kinetic modelling of geochemical processes at the Aitik mining waste rock site in northern Sweden, Appl. Geochem., 9, 583, 10.1016/0883-2927(94)90020-5

Suer, 2009, Reproducing ten years of road ageing – accelerated carbonization and leaching of EAF steel slag, Sci. Total Environ., 407, 5110, 10.1016/j.scitotenv.2009.05.039

Sun, 2009, Transformation of inorganic nitrogen in slag-wetland during the start-up period, Environ. Sci., 30, 1357

Svirenko, 2003, Environmental effects of ferrous slags – comparative analysis and a systems approach in slag impact assessment for terrestrial and aquatic ecosystems, Approach. Handl. Environ. Probl. Min. Metall. Reg., 211

Tack, 1993, Leaching behavior of granulated non-ferrous metal slags, Stud. Environ. Sci., 55, 103, 10.1016/S0166-1116(08)70288-7

Tatarinov, 2002, Metallurgical slags with spinifex textures, Geochem. Int., 40, 1075

Tetra Tech Inc., 1985. Granulated Slag Pile: Draft Stage 1 Remedial Investigation Report. Anaconda Minerals Company.

Tossavainen, 2007, Characteristics of steel slag under different cooling conditions, Waste Manage. (Oxford), 27, 1335, 10.1016/j.wasman.2006.08.002

Tsakiridis, 2008, Utilization of steel slag for Portland cement clinker production, J. Hazard. Mater., 152, 805, 10.1016/j.jhazmat.2007.07.093

Tshiongo, 2010, Effect of cooling rate on base metals recovery from copper matte smelting slags, World Acad. Sci. Eng. Technol., 70, 273

Twidwell, 1983, Safe disposal of arsenic bearing flue dust by dissolution in smelter slags, J. Hazard. Mater., 8, 85, 10.1016/0304-3894(83)80039-9

Twidwell, 1985, Disposal of arsenic bearing copper smelter flue dust, Nucl. Chem. Waste Manage., 5, 297, 10.1016/0191-815X(85)90005-1

U.S. Environmental Protection Agency (USEPA), 2008. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. SW-846 third ed. <http://www.epa.gov/osw/hazard/testmethods/sw846/index.htm> (accessed February 2012).

U.S. Environmental Protection Agency (USEPA), 2010. Regional Screening Levels (Formerly PRGs). <http://www.epa.gov/region9/superfund/prg/index.html> (accessed February 2012).

Van Oss, H.G., 2013. Slag, Iron and Steel: U.S. Geological Survey, 2011 Minerals Yearbook, vol. 1, pp. 69.1–69.9.

Vdović, 2006, Remobilization of metals from slag and polluted sediments (Case Study: the canal of the Deûle River, northern France), Environ. Pollut., 141, 359, 10.1016/j.envpol.2005.08.034

Vítková, 2010, Primary and secondary phases in copper-cobalt smelting slags from the Copperbelt Province, Zambia, Mineral. Mag., 74, 581, 10.1180/minmag.2010.074.4.581

Vítková, 2011, Effect of sample preparation on contaminant leaching from copper smelting slag, J. Hazard. Mater., 197, 417, 10.1016/j.jhazmat.2011.09.102

Vivenzio, 2005, Tahawus: an insight to the geochemistry of an industrial waste site, Geol. Soc. Am. Program. Abst., 37, 358

Weber, 2007, Upgrading constructed wetlands phosphorus reduction from a dairy effluent using electric arc furnace steel slag filters, Water Sci. Technol., 56, 135, 10.2166/wst.2007.513

Wendling, L., Douglas, G., Coleman, S., Yuan, Z., 2010. Assessment of the Ability of Low-Cost Materials to Remove Metals and Attenuate Acidity in Contaminated Waters: CSIRO – Water for a Healthy Country National Research Flagship, 138p. <http://www.water.wa.gov.au/PublicationStore/first/97303.pdf> (assessed September 2013).

Wendling, 2012, Productive use of steelmaking by-product in environmental radioactivity, Miner. Eng., 39, 219, 10.1016/j.mineng.2012.07.010

Wendling, 2013, Geochemical and ecotoxicological assessment of iron- and steel-making slags for potential use in environmental applications, Environ. Toxicol. Chem., 32, 2602, 10.1002/etc.2342

West, 1902

Weston Solutions, Inc., 2007. Final Remedial Investigation Report Hegeler Zinc Site, Danville, Vermilion County, Illinois. Document Control No. RFW250-2A-AWOO. Prepared for USEPA. <http://www.epa.gov/region5/cleanup/hegelerzinc/pdfs/hegeler_ri_200704.pdf> (accessed 09.09.13).

Wilson, L.J., 1994. Literature Review on Slag Leaching: Canada Centre for Mineral and Energy Technology, Mineral Sciences Laboratories Division Report 94-3 (CR), Ottawa.

Wolery, T.J., 1992. EQ3NR, A Computer Program for Geochemical Aqueous Speciation Solubility Calculations: Theoretical Manual, User’s Guide, and Related Documentation (Version 7.0): UCRL-MA-110662-PT-III, Lawrence Livermore National Laboratory, Livermore, California.

Wolery, T.J., Daveler, S.A., 1992. EQ6, A Computer Program for Reaction Path Modeling of Aqueous Geochemical Systems – Theoretical Manual, User’s Guide, and Related Documentation (Version 7.0): UCRL-MA-110662-PT-IV. Lawrence Livermore National Laboratory, Livermore, California.

Woodley, 1986, Hazardous waste characterization extraction procedures for the analysis of blast-furnace slag from secondary lead smelters, Environ. Prog., 5, 217, 10.1002/ep.670050108

Yang, 2010, Selective leaching of base metals from copper smelter slag, Hydrometallurgy, 103, 25, 10.1016/j.hydromet.2010.02.009

Yildirim, 2011, Chemical, mineralogical, and morphological properties of steel slag, Adv. Civil Eng., 2011, 13, 10.1155/2011/463638

Ziemkiewicz, P., Skousen, J., 1999. Steel slag in acid mine drainage treatment and control. In: Proceedings of the Annual National Meeting of the Society for Surface Mining and Reclamation, vol. 16, pp. 651–656.