Characteristic polyhedra of singularities without completion: part II

Collectanea Mathematica - Tập 72 - Trang 351-392 - 2020
Vincent Cossart1, Bernd Schober1,2,3
1Laboratoire de Mathémathiques de Versailles CNRS UMR 8100, Université Paris-Saclay, Versaills Cedex, France
2Institut für Algebraische Geometrie, Leibniz Universität Hannover, Hannover, Germany
3Institut für Mathematik, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany

Tóm tắt

Hironaka’s characteristic polyhedron is an important combinatorial object reflecting the local nature of a singularity. We prove that it can be determined without passing to the completion if the local ring is a G-ring and if additionally either it is Henselian, or a certain polynomiality condition (Pol) holds, or a mild condition (*) on the singularity holds. For example, the latter is fulfilled if the residue field is perfect.

Tài liệu tham khảo

Berthomieu, J., Hivert, P., Mourtada, H.: Computing Hironaka’s invariants: ridge and directrix. In: Arithmetic, Geometry, Cryptography and Coding Theory 2009, vol. 521, pp. 9–20. (2010) Cossart, V., Giraud, J., Orbanz, U.: Resolution of Surface Singularities, with an Appendix by H. Hironaka, Lecture Notes in Mathematics, vol. 1101. Springer, Berlin (1984) Cossart, V., Jannsen, U., Saito, S.: Desingularization: Invariants and Strategy. Application to Dimension 2. Lecture Notes in Mathematics, vol. 2270, to appear Cossart, V., Jannsen, U., Schober, B.: Invariance of Hironaka’s characteristic polyhedron. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(4), 4145–4169 (2019) Cossart, V., Piltant, O.: Resolution of singularities of threefolds in positive characteristic I. J. Algebra 320, 1051–1081 (2008) Cossart, V., Piltant, O.: Resolution of singularities of threefolds in positive characteristic II. J. Algebra 321, 1836–1976 (2009) Cossart, V., Piltant, O.: Characteristic polyhedra of singularities without completion. Math. Ann. 361, 157–167 (2015) Cossart, V., Piltant, O.: Resolution of Singularities of Arithmetical Threefolds. J. Algebra 529, 268–535 (2019) Cossart, V., Piltant, O., Schober, B.: Faîte du cône tangent à une singularité: un théorème oublié. C. R. Acad. Sci. Paris, Ser. I 355, 455–459 (2017) Cossart, V., Schober, B.: A strictly decreasing invariant for resolution of singularities in dimension two. Publ. Res. Inst. Math. Sci. 56(2), 217–280 (2020) Dietel, B.: A refinement of Hironaka’s additive group schemes for an extended invariant, Ph.D. thesis, University of Regensburg (2015). http://epub.uni-regensburg.de/31359/ Giraud, J.: Étude locale des singularités, Cours de \(3^{\acute{\text{e}}\text{ me }}\) cycle, 1971–1972. Publ. Math. d’Orsay 26, (1972) Grothendieck, A., Dieudonné, J.: Eléments de géométrie algébrique IV, Publ. Math. I.H.E.S. 24 (1965) Grothendieck, A., Dieudonné, J.: Eléments de géométrie algébrique IV, Publ. Math. I.H.E.S. 32 (1967) Hironaka, H.: Characteristic polyhedra of singularities. J. Math. Kyoto Univ. 7, 251–293 (1967) Hironaka, H.: Additive groups associated with points of a projective space. Ann. of Math. (2) 92, 327–334 (1970) Hironaka, H.: Desingularization of Excellent Surfaces. Adv. Sci. Sem. in Alg. Geo, Bowdoin College, Summer 1967. Notes by Bruce Bennett, appendix of [3] (1984) Matsumura, H.: Commutative Ring Theory, Translated from the Japanese by M. Reid. Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press (1986) Mizutani, H.: Hironaka’s additive group schemes. Nagoya Math. J. 52, 85–95 (1973) Mourtada, H., Schober, B.: A polyhedral characterization of quasi-ordinary singularities. Moscow Math. J. 18, 755–785 (2018) Oda, T.: Hironaka’s additive group scheme, Number theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo, pp. 181–219 (1973) Schober, B.: Characteristic polyhedra of idealistic exponents with history, PhD thesis, University of Regensburg (2013). available on http://epub.uni-regensburg.de/28877/