Characteristic polyhedra of singularities without completion: part II
Tóm tắt
Hironaka’s characteristic polyhedron is an important combinatorial object reflecting the local nature of a singularity. We prove that it can be determined without passing to the completion if the local ring is a G-ring and if additionally either it is Henselian, or a certain polynomiality condition (Pol) holds, or a mild condition (*) on the singularity holds. For example, the latter is fulfilled if the residue field is perfect.
Tài liệu tham khảo
Berthomieu, J., Hivert, P., Mourtada, H.: Computing Hironaka’s invariants: ridge and directrix. In: Arithmetic, Geometry, Cryptography and Coding Theory 2009, vol. 521, pp. 9–20. (2010)
Cossart, V., Giraud, J., Orbanz, U.: Resolution of Surface Singularities, with an Appendix by H. Hironaka, Lecture Notes in Mathematics, vol. 1101. Springer, Berlin (1984)
Cossart, V., Jannsen, U., Saito, S.: Desingularization: Invariants and Strategy. Application to Dimension 2. Lecture Notes in Mathematics, vol. 2270, to appear
Cossart, V., Jannsen, U., Schober, B.: Invariance of Hironaka’s characteristic polyhedron. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(4), 4145–4169 (2019)
Cossart, V., Piltant, O.: Resolution of singularities of threefolds in positive characteristic I. J. Algebra 320, 1051–1081 (2008)
Cossart, V., Piltant, O.: Resolution of singularities of threefolds in positive characteristic II. J. Algebra 321, 1836–1976 (2009)
Cossart, V., Piltant, O.: Characteristic polyhedra of singularities without completion. Math. Ann. 361, 157–167 (2015)
Cossart, V., Piltant, O.: Resolution of Singularities of Arithmetical Threefolds. J. Algebra 529, 268–535 (2019)
Cossart, V., Piltant, O., Schober, B.: Faîte du cône tangent à une singularité: un théorème oublié. C. R. Acad. Sci. Paris, Ser. I 355, 455–459 (2017)
Cossart, V., Schober, B.: A strictly decreasing invariant for resolution of singularities in dimension two. Publ. Res. Inst. Math. Sci. 56(2), 217–280 (2020)
Dietel, B.: A refinement of Hironaka’s additive group schemes for an extended invariant, Ph.D. thesis, University of Regensburg (2015). http://epub.uni-regensburg.de/31359/
Giraud, J.: Étude locale des singularités, Cours de \(3^{\acute{\text{e}}\text{ me }}\) cycle, 1971–1972. Publ. Math. d’Orsay 26, (1972)
Grothendieck, A., Dieudonné, J.: Eléments de géométrie algébrique IV, Publ. Math. I.H.E.S. 24 (1965)
Grothendieck, A., Dieudonné, J.: Eléments de géométrie algébrique IV, Publ. Math. I.H.E.S. 32 (1967)
Hironaka, H.: Characteristic polyhedra of singularities. J. Math. Kyoto Univ. 7, 251–293 (1967)
Hironaka, H.: Additive groups associated with points of a projective space. Ann. of Math. (2) 92, 327–334 (1970)
Hironaka, H.: Desingularization of Excellent Surfaces. Adv. Sci. Sem. in Alg. Geo, Bowdoin College, Summer 1967. Notes by Bruce Bennett, appendix of [3] (1984)
Matsumura, H.: Commutative Ring Theory, Translated from the Japanese by M. Reid. Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press (1986)
Mizutani, H.: Hironaka’s additive group schemes. Nagoya Math. J. 52, 85–95 (1973)
Mourtada, H., Schober, B.: A polyhedral characterization of quasi-ordinary singularities. Moscow Math. J. 18, 755–785 (2018)
Oda, T.: Hironaka’s additive group scheme, Number theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo, pp. 181–219 (1973)
Schober, B.: Characteristic polyhedra of idealistic exponents with history, PhD thesis, University of Regensburg (2013). available on http://epub.uni-regensburg.de/28877/