Characterisation of the stbD/E toxin–antitoxin system of pEP36, a plasmid of the plant pathogen Erwinia pyrifoliae
Tài liệu tham khảo
Adams, 1979, Frequency-dependet selection for plasmid-containing cells of Escherichia coli, Genetics, 91, 627, 10.1093/genetics/91.4.627
Alonso, 2007, Bacterial toxin–antitoxin systems as targets for the development of novel antibiotics, 313
Bagnara, 1973, Relationships between intracellular contents of nucleotides and 5-phosphoribosyl 1-pyrophosphate in Escherichia coli, Eur. J. Biochem., 36, 422, 10.1111/j.1432-1033.1973.tb02927.x
Berridge, 1993, Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction, Arch. Biochem. Biophys., 303, 474, 10.1006/abbi.1993.1311
Blower, 2011, A processed noncoding RNA regulates an altruistic bacterial antiviral system, Nat. Struct. Mol. Biol., 18, 185, 10.1038/nsmb.1981
Blower, 2012, Identification and classification of bacterial Type III toxin–antitoxin systems encoded in chromosomal and plasmid genomes, Nucleic Acids Res., 40, 6158, 10.1093/nar/gks231
Christensen, 2003, RelE toxins from bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA, Mol. Microbiol., 48, 1389, 10.1046/j.1365-2958.2003.03512.x
Cooper, 2000, Postsegregational killing does not increase plasmid stability but acts to mediate the exclusion of competing plasmids, Proc. Natl. Acad. Sci. USA, 97, 12643, 10.1073/pnas.220077897
Falkenstein, 1989, The 29 kb plasmid common in strains of Erwinia amylovora, modulates development of fire blight symptoms, J. Gen. Microbiol., 135, 2643
Fiebig, 2010, Interaction specificity, toxicity and regulation of a paralogous set of ParE/RelE-family toxin–antitoxin systems, Mol. Microbiol., 77, 236, 10.1111/j.1365-2958.2010.07207.x
Fineran, 2009, The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair, Proc. Natl. Acad. Sci. USA, 106, 894, 10.1073/pnas.0808832106
Fozo, 2008, Small toxic proteins and the antisense RNAs that repress them, Microbiol. Mol. Biol. Rev., 72, 579, 10.1128/MMBR.00025-08
Fozo, 2010, Abundance of type I toxin–antitoxin systems in bacteria: searches for new candidates and discovery of novel families, Nucleic Acids Res., 38, 3743, 10.1093/nar/gkq054
Galvani, 2001, Purification of the RelB and RelE proteins of Escherichia coli: RelE binds to RelB and to ribosomes, J. Bacteriol., 183, 2700, 10.1128/JB.183.8.2700-2703.2001
Geider, 2000, Exopolosaccharides of Erwinia amylovora: structure, biosynthesis, regulation, 117
Gerdes, 2005, Prokaryotic toxin–antitoxin stress response loci, Nat. Rev. Microbiol., 3, 371, 10.1038/nrmicro1147
Gerdes, 2010, Pushing and pulling in prokaryotic DNA segregation, Cell, 141, 927, 10.1016/j.cell.2010.05.033
Gerdes, 1997, Antisense RNA-regulated programmed cell death, Annu. Rev. Genet., 31, 1, 10.1146/annurev.genet.31.1.1
Gronlund, 1999, Toxin–antitoxin systems homologous with relBE of Escherichia coli plasmid P307 are ubiquitous in prokaryotes, J. Mol. Biol., 285, 1401, 10.1006/jmbi.1998.2416
Guglielmini, 2008, Automated discovery and phylogenetic analysis of new toxin–antitoxin systems, BMC Microbiol., 8, 104, 10.1186/1471-2180-8-104
Hallez, 2010, New toxins homologous to ParE belonging to three-component toxin–antitoxin systems in Escherichia coli O157:H7, Mol. Microbiol., 76, 719, 10.1111/j.1365-2958.2010.07129.x
Hayes, 1998, A family of stability determinants in pathogenic bacteria, J. Bacteriol., 180, 6415, 10.1128/JB.180.23.6415-6418.1998
Hildebrand, 2006, Characterization of hns genes from Erwinia amylovora, Mol. Genet. Genomics, 275, 310, 10.1007/s00438-005-0085-5
Inoue, 1990, High efficiency transformation of Escherichia coli with plasmids, Gene, 96, 23, 10.1016/0378-1119(90)90336-P
James, 1973, The sensitivity of suppressed and unsuppressed lon strains of Escherichia coli to chemical agents which induce filamentation, J. Gen. Microbiol., 76, 429, 10.1099/00221287-76-2-429
Jiang, 2002, ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase, Mol. Microbiol., 44, 971, 10.1046/j.1365-2958.2002.02921.x
Jorgensen, 2009, HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea, J. Bacteriol., 191, 1191, 10.1128/JB.01013-08
Kamphuis, 2007, Structure and function of bacterial kid-kis and related toxin–antitoxin systems, Protein Pept. Lett., 14, 113, 10.2174/092986607779816096
Kim, 1999, Erwinia pyrifoliae sp. nov., a novel pathogen that affects Asian pear trees (Pyrus pyrifolia Nakai), Int. J. Syst. Bacteriol., 49, 899, 10.1099/00207713-49-2-899
Kim, 2002, Genetics of biosynthesis and structure of the capsular exopolysaccharide from the Asian pear pathogen Erwinia pyrifoliae, Microbiology, 148, 4015, 10.1099/00221287-148-12-4015
Lauffenburger, 1986, Model for the dynamics of colicin plasmids in continuous culture, Ann. N. Y. Acad. Sci., 469, 97, 10.1111/j.1749-6632.1986.tb26488.x
Leplae, 2011, Diversity of bacterial type II toxin–antitoxin systems: a comprehensive search and functional analysis of novel families, Nucleic Acids Res., 39, 5513, 10.1093/nar/gkr131
Lioy, 2010, A toxin–antitoxin module as a target for antimicrobial development, Plasmid, 63, 31, 10.1016/j.plasmid.2009.09.005
Lioy, 2012, The eta toxin induces a set of protective responses and dormancy, PLoS One, 7, e30282, 10.1371/journal.pone.0030282
Liu, 2008, Bacterial addiction module toxin Doc inhibits translation elongation through its association with the 30S ribosomal subunit, Proc. Natl. Acad. Sci. USA, 105, 5885, 10.1073/pnas.0711949105
Llop, 2006, An indigenous virulent strain of Erwinia amylovora lacking the ubiquitous plasmid pEA29, Phytopathology, 96, 900, 10.1094/PHYTO-96-0900
Llop, 2011, Erwinia amylovora novel plasmid pEI70: complete sequence, biogeography, and role in aggressiveness in the fire blight phytopathogen, PLoS One, 6, e28651, 10.1371/journal.pone.0028651
Maes, 2001, Influence of amylovoran production on virulence of Erwinia amylovora and a different amylovoran structure in E. amylovora isolates from Rubus, Eur. J. Plant Pathol., 107, 839, 10.1023/A:1012215201253
Masuda, 2012, YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli, Mol. Microbiol., 84, 979, 10.1111/j.1365-2958.2012.08068.x
McGhee, 2000, Complete nucleotide sequence of ubiquitous plasmid pEA29 from Erwinia amylovora strain Ea88: gene organization and intraspecies variation, Appl. Environ. Microbiol., 66, 4897, 10.1128/AEM.66.11.4897-4907.2000
McGhee, 2002, Relatedness of chromosomal and plasmid DNAs of Erwinia pyrifoliae and Erwinia amylovora, Appl. Environ. Microbiol., 68, 6182, 10.1128/AEM.68.12.6182-6192.2002
Mohammadi, 2010, Enhanced colonization and pathogenicity of Erwinia amylovora strains transformed with the near-ubiquitous pEA29 plasmid on pear and apple, Plant Pathol., 59, 252, 10.1111/j.1365-3059.2009.02182.x
Mohammadi, 2009, Characterisation of naturally occuring Erwinia amylovora strains lacking the common plasmid pEA29 and their detection with real-time PCR, Eur. J. Plant Pathol., 124, 293, 10.1007/s10658-008-9417-8
Muñoz-Gómez, 2005, RNase/anti-RNase activities of the bacterial parD toxin–antitoxin system, J. Bacteriol., 187, 3151, 10.1128/JB.187.9.3151-3157.2005
Mutschler, 2011, A novel mechanism of programmed cell death in bacteria by toxin–antitoxin systems corrupts peptidoglycan synthesis, PLoS Biol., 9, e1001033, 10.1371/journal.pbio.1001033
Neubauer, 2009, The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE, Cell, 139, 1084, 10.1016/j.cell.2009.11.015
Nieto, 2010, The relBE2Spn toxin–antitoxin system of Streptococcus pneumoniae: role in antibiotic tolerance and functional conservation in clinical isolates, PLoS One, 5, e11289, 10.1371/journal.pone.0011289
Nimtz, 1996, Structure of amylovoran, the capsular exopolysaccharide from the fire blight pathogen Erwinia amylovora, Carbohydr. Res., 287, 59, 10.1016/0008-6215(96)00070-5
Pandey, 2005, Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes, Nucleic Acids Res., 33, 966, 10.1093/nar/gki201
Pedersen, 2003, The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site, Cell, 112, 131, 10.1016/S0092-8674(02)01248-5
Rhim, 1999, Erwinia pyrifoliae, an Erwinia species different from Erwinia amylovora, causes a necrotic disease of Asian pear trees, Plant Pathol., 48, 514, 10.1046/j.1365-3059.1999.00376.x
Rozhon, 2012, The natural antibiotic resistances of the enterobacteriaceae Rahnella and Ewingella, 77
Rozhon, 2012, Identification of the region required for maintaining pHW126 in its monomeric form, FEMS Microbiol. Lett., 331, 89, 10.1111/j.1574-6968.2012.02557.x
Rozhon, 2011, Identification of cis- and trans-acting elements in pHW126, a representative of a novel group of rolling circle plasmids, Plasmid, 65, 70, 10.1016/j.plasmid.2010.09.002
Rozhon, 2006, Isolation and characterization of pHW15, a small cryptic plasmid from Rahnella genomospecies 2, Plasmid, 56, 202, 10.1016/j.plasmid.2006.05.007
Sambrook, 2001
Schumacher, 2009, Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB, Science, 323, 396, 10.1126/science.1163806
Sjulin, 1977, Mechanism of wilting induction by amylovoran in cotoneaster shoots and its relation to wilting of shoots infected by Erwinia amylovora, Phytopathol, 68, 89, 10.1094/Phyto-68-89
Smith, 2012, A common origin for the bacterial toxin–antitoxin systems parD and ccd, suggested by analyses of toxin/target and toxin/antitoxin interactions, PLoS One, 7, e46499, 10.1371/journal.pone.0046499
Summers, 1984, Multimerization of high copy number plasmids causes instability: CoIE1 encodes a determinant essential for plasmid monomerization and stability, Cell, 36, 1097, 10.1016/0092-8674(84)90060-6
Summers, 1993, Multicopy plasmid instability: the dimer catastrophe hypothesis, Mol. Microbiol., 8, 1031, 10.1111/j.1365-2958.1993.tb01648.x
Szekeres, 2007, Chromosomal toxin–antitoxin loci can diminish large-scale genome reductions in the absence of selection, Mol. Microbiol., 63, 1588, 10.1111/j.1365-2958.2007.05613.x
Van Melderen, 2002, Molecular interactions of the CcdB poison with its bacterial target, the DNA gyrase, Int. J. Med. Microbiol., 291, 537, 10.1078/1438-4221-00164
Wang, 2010, An improved 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay for evaluating the viability of Escherichia coli cells, J. Microbiol. Methods, 82, 330, 10.1016/j.mimet.2010.06.014
Wang, 2012, A new type V toxin–antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS, Nat. Chem. Biol., 8, 855, 10.1038/nchembio.1062
Williams, 2012, Artificial activation of toxin–antitoxin systems as an antibacterial strategy, Trends Microbiol., 20, 291, 10.1016/j.tim.2012.02.005
Williams, 1998, Distinguishing between living and nonliving bacteria: Evaluation of the vital stain propidium iodide and its combined use with molecular probes in aquatic samples, J. Microbiol. Methods, 32, 225, 10.1016/S0167-7012(98)00014-1
Winther, 2009, Ectopic production of VapCs from Enterobacteria inhibits translation and trans-activates YoeB mRNA interferase, Mol. Microbiol., 72, 918, 10.1111/j.1365-2958.2009.06694.x
Wozniak, 2009, A toxin–antitoxin system promotes the maintenance of an integrative conjugative element, PLoS Genet., 5, e1000439, 10.1371/journal.pgen.1000439
Zhang, 2003, MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli, Mol. Cell, 12, 913, 10.1016/S1097-2765(03)00402-7