Đặc trưng hóa không gian trình tự–cấu trúc–chức năng trong các bộ tích hợp cảm biến–hiệu ứng của cyclase diguanilat được điều chỉnh bởi phytochrome

Photochemical & Photobiological Sciences - Tập 21 - Trang 1761-1779 - 2022
Cornelia Böhm1,2, Geoffrey Gourinchas1,3, Sophie Zweytick1, Elvira Hujdur1, Martina Reiter1, Sara Trstenjak1, Christoph Wilhelm Sensen4,5, Andreas Winkler1,2
1Institute of Biochemistry, Graz University of Technology, Graz, Austria
2BioTechMed Graz, Graz, Austria
3Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
4BioTechMed-Graz, Graz, Austria
5Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary

Tóm tắt

Hiểu mối quan hệ giữa trình tự protein, cấu trúc và chức năng là một trong những thách thức cơ bản trong hóa sinh. Tuy nhiên, một mối tương quan trực tiếp thường không đơn giản vì động học của protein cũng đóng vai trò quan trọng trong chức năng—đặc biệt trong các quá trình truyền tín hiệu. Trong một tiểu họ bề mặt cảm biến ánh sáng của vi khuẩn, các cyclase diguanilat được kích hoạt bởi phytochrome (PadCs), một yếu tố liên kết coild-coil đặc trưng kết nối cảm biến ánh sáng và mô-đun đầu ra, đóng vai trò thiết yếu trong việc tích hợp tín hiệu. Kết hợp giữa phân tích phát sinh chủng loại và đặc trưng hóa hóa sinh, chúng tôi đã chứng minh rằng chiều dài và thành phần của liên kết này xác định chức năng cảm biến–hiệu ứng và do đó chịu áp lực tiến hóa đáng kể. Chiều dài liên kết, cùng với miền PHY đặc hiệu phía trên, ảnh hưởng đến phạm vi động lực của sự kích hoạt hiệu ứng và thậm chí có thể dẫn đến sự ức chế enzym do ánh sáng. Chúng tôi thể hiện sự phân cụm phát sinh chủng loại theo chiều dài liên kết, và sự phát triển của các chiều dài liên kết mới cũng như chức năng protein mới trong các gia đình liên kết. Đặc trưng hóa hóa sinh của các homologue PadC đã tiết lộ rằng sự kết hợp chức năng của giao diện dimmer PHY và yếu tố liên kết xác định việc tích hợp tín hiệu và điều chỉnh chức năng đầu ra. Một tiểu họ nhỏ của các PadC, được đặc trưng bởi chiều dài liên kết phá vỡ mẫu coild-coil, cho thấy hành vi khác biệt rõ rệt so với các homologue khác. Ảnh hưởng của cột sống xoắn trung tâm lên chức năng PadC làm nổi bật vai trò thiết yếu của nó trong việc tích hợp tín hiệu cũng như điều chỉnh trực tiếp hoạt động của cyclase diguanilat. Sự đánh giá các yếu tố liên kết cảm biến–hiệu ứng như các yếu tố tích hợp và sự đồng tiến hóa của chúng với các mô-đun cảm giác là một bước tiến thêm hướng tới việc sử dụng các homologue chức năng đa dạng như các khối xây dựng cho các công cụ quang sinh học được thiết kế hợp lý.

Từ khóa

#cảm biến #hiệu ứng #cyclase diguanilat #phytochrome #tích hợp tín hiệu

Tài liệu tham khảo

Chothia, C., & Lesk, A. M. (1986). The relation between the divergence of sequence and structure in proteins. EMBO Journal, 5, 823–826. Whisstock, J. C., & Lesk, A. M. (2003). Prediction of protein function from protein sequence and structure. Quarterly Reviews of Biophysics, 36, 307–340. https://doi.org/10.1017/S0033583503003901 Fraikin, G. Y., Strakhovskaya, M. G., & Rubin, A. B. (2013). Biological photoreceptors of light-dependent regulatory processes. Biochemistry (Moscow), 78, 1238–1253. https://doi.org/10.1134/S0006297913110047 Gourinchas, G., Etzl, S., & Winkler, A. (2019). Bacteriophytochromes—From informative model systems of phytochrome function to powerful tools in cell biology. Current Opinion in Structural Biology, 57, 72–83. https://doi.org/10.1016/j.sbi.2019.02.005 Gourinchas, G., Etzl, S., Göbl, C., Vide, U., Madl, T., & Winkler, A. (2017). Long-range allosteric signaling in red light–regulated diguanylyl cyclases. Science Advances, 3, e1602498. https://doi.org/10.1126/sciadv.1602498 Gourinchas, G., Heintz, U., & Winkler, A. (2018). Asymmetric activation mechanism of a homodimeric red light-regulated photoreceptor. eLife, 7, e34815. https://doi.org/10.7554/eLife.34815 Gourinchas, G., Vide, U., & Winkler, A. (2019). Influence of the N-terminal segment and the PHY-tongue element on light-regulation in bacteriophytochromes. Journal of Biological Chemistry, 294, 4498–4510. https://doi.org/10.1074/jbc.RA118.007260 Böhm, C., Todorović, N., Balasso, M., Gourinchas, G., & Winkler, A. (2021). The PHY domain dimer interface of bacteriophytochromes mediates cross-talk between photosensory modules and output domains. Journal of Molecular Biology, 433, 167092. https://doi.org/10.1016/j.jmb.2021.167092 Rockwell, N. C., Su, Y. S., & Lagarias, J. C. (2006). Phytochrome structure and signaling mechanisms. Annual Review of Plant Biology, 57, 837–858. https://doi.org/10.1146/annurev.arplant.56.032604.144208 Essen, L. O., Mailliet, J., & Hughes, J. (2008). The structure of a complete phytochrome sensory module in the Pr ground state. Proceedings of the National Academy of Sciences of the United States of America, 105, 14709–14714. https://doi.org/10.1073/pnas.0806477105 Ryjenkov, D. A., Tarutina, M., Moskvin, O. V., & Gomelsky, M. (2005). Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: Insights into biochemistry of the GGDEF protein domain. Journal of Bacteriology, 187, 1792–1798. https://doi.org/10.1128/JB.187.5.1792-1798.2005 Römling, U., Galperin, M. Y., & Gomelsky, M. (2013). Cyclic di-GMP: The first 25 years of a universal bacterial second messenger. Microbiology and Molecular Biology Reviews, 77, 1–52. https://doi.org/10.1128/mmbr.00043-12 Jenal, U., Reinders, A., & Lori, C. (2017). Cyclic di-GMP: Second messenger extraordinaire. Nature Reviews Microbiology, 15, 271–284. https://doi.org/10.1038/nrmicro.2016.190 Tarutina, M., Ryjenkov, D. A., & Gomelsky, M. (2006). An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP. Journal of Biological Chemistry, 281, 34751–34758. https://doi.org/10.1074/jbc.M604819200 Tal, R., Wong, H. C., Calhoon, R., Gelfand, D., Fear, A. L., Volman, G., et al. (1998). Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: Genetic organization and occurrence of conserved domains in isoenzymes. Journal of Bacteriology, 180, 4416–4425. https://doi.org/10.1128/jb.180.17.4416-4425.1998 Levet-Paulo, M., Lazzaroni, J. C., Gilbert, C., Atlan, D., Doublet, P., & Vianney, A. (2011). The atypical two-component sensor kinase Lpl0330 from Legionella pneumophila controls the bifunctional diguanylate cyclase-phosphodiesterase Lpl0329 to modulate Bis-(3′-5′)-cyclic dimeric GMP synthesis. Journal of Biological Chemistry, 286, 31136–31144. https://doi.org/10.1074/jbc.M111.231340 Bharati, B. K., Sharma, I. M., Kasetty, S., Kumar, M., Mukherjee, R., & Chatterji, D. (2012). A full-length bifunctional protein involved in c-di-GMP turnover is required for long-term survival under nutrient starvation in Mycobacterium smegmatis. Microbiology (United Kingdom), 158, 1415–1427. https://doi.org/10.1099/mic.0.053892-0 Simm, R., Morr, M., Kader, A., Nimtz, M., & Römling, U. (2004). GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessibility to motility. Molecular Microbiology, 53, 1123–1134. https://doi.org/10.1111/j.1365-2958.2004.04206.x Petchiappan, A., Naik, S. Y., & Chatterji, D. (2020). Tracking the homeostasis of second messenger cyclic-di-GMP in bacteria. Biophysical Reviews, 12, 719–730. https://doi.org/10.1007/s12551-020-00636-1 Römling, U., Gomelsky, M., & Galperin, M. Y. (2005). C-di-GMP: The dawning of a novel bacterial signalling system. Molecular Microbiology, 57, 629–639. https://doi.org/10.1111/j.1365-2958.2005.04697.x Goldman, S. R., Sharp, J. S., Vvedenskaya, I. O., Livny, J., Dove, S. L., & Nickels, B. E. (2011). NanoRNAs prime transcription initiation in vivo. Molecular Cell, 42, 817–825. https://doi.org/10.1016/j.molcel.2011.06.005 Christen, M., Christen, B., Folcher, M., Schauerte, A., & Jenal, U. (2005). Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. Journal of Biological Chemistry, 280, 30829–30837. https://doi.org/10.1074/jbc.M504429200 Ahuja, L. G., Taylor, S. S., & Kornev, A. P. (2019). Tuning the “Violin” of protein kinases: The role of dynamics-based allostery. IUBMB Life, 71, 685–696. https://doi.org/10.1002/iub.2057 Paul, R., Abel, S., Wassmann, P., Beck, A., Heerklotz, H., & Jenal, U. (2007). Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. Journal of Biological Chemistry, 282, 29170–29177. https://doi.org/10.1074/jbc.M704702200 Wagner, J. R., Zhang, J., Brunzelle, J. S., Vierstra, R. D., & Forest, K. T. (2007). High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution. Journal of Biological Chemistry, 282, 12298–12309. https://doi.org/10.1074/jbc.M611824200 Lamparter, T., Michael, N., Caspani, O., Miyata, T., Shirai, K., & Inomata, K. (2003). Biliverdin binds covalently to Agrobacterium phytochrome Agp1 via its ring a vinyl side chain. Journal of Biological Chemistry, 278, 33786–33792. https://doi.org/10.1074/jbc.M305563200 Takala, H., Björling, A., Berntsson, O., Lehtivuori, H., Niebling, S., Hoernke, M., et al. (2014). Signal amplification and transduction in phytochrome photosensors. Nature, 509, 245–248. https://doi.org/10.1038/nature13310 Moutevelis, E., & Woolfson, D. N. (2009). A periodic table of coiled-coil protein structures. Journal of Molecular Biology, 385, 726–732. https://doi.org/10.1016/j.jmb.2008.11.028 Smets, B. F., & Barkay, T. (2005). Horizontal gene transfer: Perspectives at a crossroads of scientific disciplines. Nature Reviews Microbiology, 3, 675–678. https://doi.org/10.1038/nrmicro1253 Wagner, J. R., Brunzelle, J. S., Forest, K. T., & Vierstra, R. D. (2005). A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature, 438, 325–331. https://doi.org/10.1038/nature04118 Lamparter, T., Carrascal, M., Michael, N., Martinez, E., Rottwinkel, G., & Abian, J. (2004). The biliverdin chromophore binds covalently to a conserved cysteine residue in the N-terminus of Agrobacterium phytochrome Agp1. Biochemistry, 43, 3659–3669. https://doi.org/10.1021/bi035693l Burgie, E. S., & Vierstra, R. D. (2014). Phytochromes: An atomic perspective on photoactivation and signaling. The Plant Cell, 26, 4568–4583. https://doi.org/10.1105/tpc.114.131623 Schirmer, T. (2016). C-di-GMP synthesis: Structural aspects of evolution, catalysis and regulation. Journal of Molecular Biology, 428, 3683–3701. https://doi.org/10.1016/j.jmb.2016.07.023 Schmidt, A. J., Ryjenkov, D. A., & Gomelsky, M. (2005). The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: Enzymatically active and inactive EAL domains. Journal of Bacteriology, 187, 4774–4781. https://doi.org/10.1128/JB.187.14.4774-4781.2005 Minasov, G., Padavattan, S., Shuvalova, L., Brunzelle, J. S., Miller, D. J., Baslé, A., et al. (2009). Crystal structures of Ykul and its complex with second messenger cyclic Di-GMP suggest catalytic mechanism of phosphodiester bond cleavage by EAL domains. Journal of Biological Chemistry, 284, 13174–13184. https://doi.org/10.1074/jbc.M808221200 (2004) NCBI Protein [Internet]. Bethesda Natl. Libr. Med. (US), Natl. Cent. Biotechnol. Inf. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402. https://doi.org/10.1093/nar/25.17.3389 Felsenstein, J. (2005). PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. University of Washington, Department of Genome Sciences. Blumenstein, A., Vienken, K., Tasler, R., Purschwitz, J., Veith, D., Frankenberg-Dinkel, N., et al. (2005). The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Current Biology, 15, 1833–1838. https://doi.org/10.1016/j.cub.2005.08.061 Brandt, S., Von Stetten, D., Günther, M., Hildebrandt, P., & Frankenberg-Dinkel, N. (2008). The fungal phytochrome FphA from Aspergillus nidulans. Journal of Biological Chemistry, 283, 34605–34614. https://doi.org/10.1074/jbc.M805506200 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., et al. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10, 1–9. https://doi.org/10.1186/1471-2105-10-421 Hartmann, M. D., Mendler, C. T., Bassler, J., Karamichali, I., Ridderbusch, O., Lupas, A. N., et al. (2016). Α/Β coiled coils. eLife. https://doi.org/10.7554/eLife.11861 Buhrke, D., Gourinchas, G., Müller, M., Michael, N., Hildebrandt, P., & Winkler, A. (2020). Distinct chromophore–protein environments enable asymmetric activation of a bacteriophytochrome-activated diguanylate cyclase. Journal of Biological Chemistry, 295, 539–551. https://doi.org/10.1074/jbc.RA119.011915 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589. https://doi.org/10.1038/s41586-021-03819-2 Otero, L. H., Foscaldi, S., Antelo, G. T., Rosano, G. L., Sirigu, S., Klinke, S., et al. (2021). Structural basis for the Pr-Pfr long-range signaling mechanism of a full-length bacterial phytochrome at the atomic level. Science Advances. https://doi.org/10.1126/sciadv.abh1097 Burgie, E. S., Wang, T., Bussell, A. N., Walker, J. M., Li, H., & Vierstra, R. D. (2014). Crystallographic and electron microscopic analyses of a bacterial phytochrome reveal local and global rearrangements during photoconversion. Journal of Biological Chemistry, 289, 24573–24587. https://doi.org/10.1074/jbc.M114.571661 Björling, A., Berntsson, O., Lehtivuori, H., Takala, H., Hughes, A. J., Panman, M., et al. (2016). Structural photoactivation of a full-length bacterial phytochrome. Science Advances, 2, e1600920. https://doi.org/10.1126/sciadv.1600920 Blain-Hartung, M., Rockwell, N. C., & Lagarias, J. C. (2021). Natural diversity provides a broadspectrum of cyanobacteriochrome-based diguanylate cyclases. Plant Physiology, 187, 632–645. https://doi.org/10.1093/plphys/kiab240 Multamäki, E., Nanekar, R., Morozov, D., Lievonen, T., Golonka, D., Wahlgren, W. Y., et al. (2021). Comparative analysis of two paradigm bacteriophytochromes reveals opposite functionalities in two-component signaling. Nature Communications, 12, 4394. https://doi.org/10.1038/s41467-021-24676-7 Teixeira, R. D., Holzschuh, F., & Schirmer, T. (2021). Activation mechanism of a small prototypic Rec-GGDEF diguanylate cyclase. Nature Communications, 12, 1–15. https://doi.org/10.1038/s41467-021-22492-7 Brown, J. H., Cohen, C., & Parry, D. A. D. (1996). Heptad breaks in α-helical coiled coils: Stutters and stammers. Proteins: Structure Function and Genetics, 26, 134–145. https://doi.org/10.1002/(SICI)1097-0134(199610)26:2%3c134::AID-PROT3%3e3.0.CO;2-G Lamparter, T., Krauß, N., & Scheerer, P. (2017). Phytochromes from Agrobacterium fabrum. Photochemistry and Photobiology, 93, 642–655. https://doi.org/10.1111/php.12761 Giraud, E., Zappa, S., Vuillet, L., Adriano, J. M., Hannibal, L., Fardoux, J., et al. (2005). A new type of bacteriophytochrome acts in tandem with a classical bacteriophytochrome to control the antennae synthesis in Rhodopseudomonas palustris. Journal of Biological Chemistry, 280, 32389–32397. https://doi.org/10.1074/jbc.M506890200 Glantz, S. T., Carpenter, E. J., Melkonian, M., Gardner, K. H., Boyden, E. S., Wong, G. K. S., et al. (2016). Functional and topological diversity of LOV domain photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 113, E1442–E1451. https://doi.org/10.1073/pnas.1509428113 Fixen, K. R., Baker, A. W., Stojkovic, E. A., Beatty, J. T., & Harwood, C. S. (2014). Apo-bacteriophytochromes modulate bacterialphotosynthesis in response to low light. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1322410111 Ganfornina, M. D., & Sánchez, D. (1999). Generation of evolutionary novelty by functional shift. BioEssays, 21, 432–439. https://doi.org/10.1002/(SICI)1521-1878(199905)21:5%3c432::AID-BIES10%3e3.0.CO;2-T Mantoni, F., Rossi, C. S., Paiardini, A., Di Matteo, A., Cappellacci, L., Petrelli, R., et al. (2021). Studying ggdef domain in the act: Minimize conformational frustration to prevent artefacts. Life, 11, 1–13. https://doi.org/10.3390/life11010031 Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., et al. (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature, 325, 279–281. https://doi.org/10.1038/325279a0 Liu, C., Liew, C. W., Wong, Y. H., Tan, S. T., Poh, W. H., Manimekalai, M. S. S., et al. (2018). Insights into biofilm dispersal regulation from the crystal structure of the PAS-GGDEF-EAL region of RbdA from Pseudomonas aeruginosa. Journal of Bacteriology, 200, 1–19. https://doi.org/10.1128/JB.00515-17 Winkler, A., Udvarhelyi, A., Hartmann, E., Reinstein, J., Menzel, A., Shoeman, R. L., et al. (2014). Characterization of elements involved in allosteric light regulation of phosphodiesterase activity by comparison of different functional BlrP1 states. Journal of Molecular Biology, 426, 853–868. https://doi.org/10.1016/j.jmb.2013.11.018 Sundriyal, A., Massa, C., Samoray, D., Zehender, F., Sharpe, T., Jenal, U., et al. (2014). Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger cyclic di-GMP. Journal of Biological Chemistry, 289, 6978–6990. https://doi.org/10.1074/jbc.M113.516195 Atkinson, H. J., Morris, J. H., Ferrin, T. E., & Babbitt, P. C. (2009). Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS ONE, 4, e4345. https://doi.org/10.1371/journal.pone.0004345 Takala, H., Edlund, P., Ihalainen, J. A., & Westenhoff, S. (2020). Tips and turns of bacteriophytochrome photoactivation. Photochemical and Photobiological Sciences, 19, 1488–1510. https://doi.org/10.1039/d0pp00117a Agarwala, R., Barrett, T., Beck, J., Benson, D. A., Bollin, C., Bolton, E., et al. (2018). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 46, D8-13. https://doi.org/10.1093/nar/gkx1095 Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302, 205–217. https://doi.org/10.1006/jmbi.2000.4042 Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J. M., et al. (2011). T-Coffee: A web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Research, 39, 13–17. https://doi.org/10.1093/nar/gkr245 Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25, 1189–1191. https://doi.org/10.1093/bioinformatics/btp033 Rambaut, A. (2018) FigTree v1.4.4. http://tree.bio.ed.ac.uk/software/figtree/ Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504. https://doi.org/10.1101/gr.1239303.metabolite Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nature Methods, 19, 679–682. https://doi.org/10.1038/s41592-022-01488-1. Ovchinnikov, S., Kamisetty, H., & Baker, D. (2014). Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information. eLife, 2014, 1–21. https://doi.org/10.7554/eLife.02030