Characterisation of eco-friendly self-compacting geopolymer concrete for fire endurance properties

Endow Ayar Mazumder1, L. V. Prasad M.2
1National Institute of Technology Silchar
2National Institute of Technology Silchar, Silchar, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2004) On the development of fly ash-based geopolymer concrete. ACI Mater J 101(6):467–472

Nath P, Sarker PK (2014) Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater 66:163–171

Fernandez-Jimenez A, Palomo A (2006) Engineering properties of alkali-activated flyash concrete. ACI Mater J 103(2):106–112

Chindaprasirt P, Chareerat T, Sirivivatnanon V (2007) Workability and strength of coarse high calcium fly ash geopolymer. Cem Concr Compos 29:224–229

Mazumder E, Prasad MLV (2021) Effect of Quantity of Industrial Waste on Eco-Friendly Geopolymer Concrete. MSF 1019:102–109. https://doi.org/10.4028/www.scientific.net/msf.1019.102

Bakharev T, Sanjayan J, Cheng Y (1999) Alkali activation of Australian slag cements. Cem Concr Res 29:113–120

Fernandez-Jimenez A, Palomo JG, Puertas F (1999) Alkali activated slag mortars: mechanical strength behavior. Cem Concr Res 29:1313–1321

Deb P, Nath P, Sarker PK (2014) The effects of ground granulated blast furnace slag blending with fly ash and activator content on the strength and workability of geopolymer concrete cured at ambient temperature. Mater Des 62:32–39

Praveen Kumar VV, Naga Prasad, Dey S (2020) Influence of metakaolin on strength and durability characteristics of ground granulated blast furnace slag based geopolymer concrete. Struct Concrete 21:1040–1050. https://doi.org/10.1002/suco.201900415

Nath P, Sarker PK (2015) Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem Concr Compos 55:205–214

Fernandez-Jimenez A, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem Concr Res 35:1984–1992

Sarker PK (2011) Bond strength of reinforcing steel embedded in geopolymer concrete. Mater Struct 44:1021–1030

Rahman M, Sarker PK Geopolymer concrete columns under combined axial load and biaxial bending. In: CONCRETE 2011 conference, Oct 12–14, 2011. Perth, Western Australia: The Concrete Institute of Australia

Sumajouw DMJ, Hardjito D, Wallah SE, Rangan BV (2007) Fly ash-based geopolymer concrete: study of slender columns. J Mater Sci 42(9):3124–3130

Chang EH, Sarker PK, Lloyd N, Rangan BV Shear behaviour of reinforced fly ash-based geopolymer concrete beams. In: Proceedings of the concrete institute of Australia

Mazumder E, Tarafder N, Prasad LVM (2022) Mechanical Properties of an Industrial Waste Concrete with Self-compacting Geopolymerization. In: Kumar PG, Subramaniam KVL, Santhakumar SM, Satyam D (eds) Recent Advances in Civil Engineering. Lecture Notes in Civil Engineering, vol 233. Springer, Singapore. https://doi.org/10.1007/978-981-19-0189-8_37

Lyon RE, Balaguru PN, Foden A, Sorathia U, Davidovits J, Davidovics M (1997) Fire resistant aluminosilicate composites. Fire Mater 21:61–73

Shaikh FUA, Vimonsatit V (2015) Compressive strength of fly ash based geopolymer concrete at elevated temperature. Fire Mater 39:174–188. https://doi.org/10.1002/fam.2240

Kong DLY, Sanjayan JG (2008) Damage behavior of geopolymer composites exposed to elevated temperatures. Cem Concr Compos 30(10):986–991

Abdullah MMAB, Jamluddin L, Hussin K, Bnhussain N, Ghazali CMR, Ahmad MI (2012) Fly ash porous material using geopolymerization process for high temperature exposure. Int J Mol Sci 13:4388–4395

Sarker PK, de Meillon T (2007) Geopolymer concrete after exposure to high temperature heat. In: Zingoni A (ed) Recent developments in structural engineering, mechanics and computation. Millpress, Rotterdam, The Netherlands, pp 1566–1571

Sarker PK, Kelly S, Yao ZT (2014) Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater Des 63:584–592

Mathews ME, Kiran T, Anand N, Lubloy E, Naser MZ, Prince Arulraj G, Effect of protective coating on axial resistance and residual capacity of self compacting concrete columns exposed to standard fire, Engineering Structures, Volume 264,2022,114444, https://doi.org/10.1016/j.engstruct.2022.114444

International Standards Organisation (1980) Fire Resistance Tests, Elements of Building Construction (ISO 834), Switzerland;

Standards ASTM(2008) Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete (ASTM C 618-08), USA;

EFNARC (2002) Specification and guidelines for self-compacting concrete. European Federation of Producers and Applicators of Specialist Products for Structures

Okamura H, Ozawa K, Ouchi M (2000) Self-compacting concrete. Struct Concr 1(1):3–17

Okamura H, Ouchi M (2003) Self-compacting concrete. J Adv Concr Technol 1(1):5–15

Dey S, Kumar VVP, Goud KR et al (2021) State of art review on self compacting concrete using mineral admixtures. J Build Rehabil 6:18. https://doi.org/10.1007/s41024-021-00110-9

Ismail I, Bernal SA, Provis JL, Hamdan S, van Deventer JS (2013) Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater Struct 46(3):361–373. https://doi.org/10.1617/s11527-012-9906-2

IS 2770, Reaffirmed Year (1967) (: 2017) Methods of testing bond in reinforced concrete, Part 1: Pull-out test, Bureau of Indian Standards, New Delhi