Characterisation of carbapenem-resistance mechanisms in clinical Pseudomonas aeruginosa isolates recovered in a Spanish hospital
Tài liệu tham khảo
Lister, 2009, Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms, Clin Microbiol Rev, 22, 582, 10.1128/CMR.00040-09
Poole, 2011, Pseudomonas aeruginosa: resistance to the max, Front Microbiol, 2, 65, 10.3389/fmicb.2011.00065
Fresnadillo-Martínez, 2010, Los carbapenems disponibles: propiedades y diferencias, Enferm Infecc Microbiol Clin, 28, 53, 10.1016/S0213-005X(10)70031-8
Queenan, 2007, Carbapenemases: the versatile beta-lactamases, Clin Microbiol Rev, 20, 440, 10.1128/CMR.00001-07
Riera, 2011, Pseudomonas aeruginosa carbapenem resistance mechanisms in Spain: impact on the activity of imipenem, meropenem and doripenem, J Antimicrob Chemother, 66, 2022, 10.1093/jac/dkr232
Oliver, 2015, The increasing threat of Pseudomonas aeruginosa high-risk clones, Drug Resist Updat, 21-22, 41, 10.1016/j.drup.2015.08.002
Castanheira, 2014, Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009–11 in 14 European and Mediterranean countries, J Antimicrob Chemother, 69, 1804, 10.1093/jac/dku048
Rojo-Bezares, 2014, Carbapenem-resistant Pseudomonas aeruginosa strains from a Spanish hospital: characterization of metallo-beta-lactamases, porin OprD and integrons, Int J Med Microbiol, 304, 405, 10.1016/j.ijmm.2014.01.001
Tenover, 1995, Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing, J Clin Microbiol, 33, 2233, 10.1128/jcm.33.9.2233-2239.1995
Clinical and Laboratory Standards Institute, 2012
Wolter, 2004, Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance, FEMS Microbiol Lett, 236, 137, 10.1111/j.1574-6968.2004.tb09639.x
Gutiérrez, 2007, Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals, Antimicrob Agents Chemother, 51, 4329, 10.1128/AAC.00810-07
Sáenz, 2004, Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins, Antimicrob Agents Chemother, 48, 3996, 10.1128/AAC.48.10.3996-4001.2004
Magiorakos, 2012, Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance, Clin Microbiol Infect, 18, 268, 10.1111/j.1469-0691.2011.03570.x
Knoester, 2014, An integrated approach to control a prolonged outbreak of multidrug-resistant Pseudomonas aeruginosa in an intensive care unit, Clin Microbiol Infect, 20, O207, 10.1111/1469-0691.12372
Fournier, 2013, Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa, J Antimicrob Chemother, 68, 1772, 10.1093/jac/dkt098
Liakopoulos, 2013, Carbapenemase-producing Pseudomonas aeruginosa from central Greece: molecular epidemiology and genetic analysis of class I integrons, BMC Infect Dis, 13, 505, 10.1186/1471-2334-13-505
Fritsche, 2005, Emerging metallo-beta-lactamase-mediated resistances: a summary report from the worldwide SENTRY antimicrobial surveillance program, Clin Infect Dis, 41, S276, 10.1086/430790
Rodríguez-Martínez, 2009, Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa, Antimicrob Agents Chemother, 53, 4783, 10.1128/AAC.00574-09
Cabot, 2012, Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones, Antimicrob Agents Chemother, 56, 6349, 10.1128/AAC.01388-12
Diene, 2013, ISPa46, a novel insertion sequence in the oprD porin gene of an imipenem-resistant Pseudomonas aeruginosa isolate from a cystic fibrosis patient in Marseille, France, Int J Antimicrob Agents, 42, 268, 10.1016/j.ijantimicag.2013.06.001
Estepa, 2015, Genetic Lineages and antimicrobial resistance in Pseudomonas spp. isolates recovered from food samples, Foodborne Pathog Dis, 12, 486, 10.1089/fpd.2014.1928
Ruiz-Martínez, 2011, A mechanism of carbapenem resistance due to a new insertion element (ISPa133) in Pseudomonas aeruginosa, Int Microbiol, 14, 51
Ocampo-Sosa, 2012, Alterations of OprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study, Antimicrob Agents Chemother, 56, 1703, 10.1128/AAC.05451-11
Epp, 2001, C-terminal region of Pseudomonas aeruginosa outer membrane porin OprD modulates susceptibility to meropenem, Antimicrob Agents Chemother, 45, 1780, 10.1128/AAC.45.6.1780-1787.2001
Palzkill, 2013, Metallo-beta-lactamase structure and function, Ann N Y Acad Sci, 1277, 91, 10.1111/j.1749-6632.2012.06796.x
Woodford, 2011, Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance, FEMS Microbiol Rev, 35, 736, 10.1111/j.1574-6976.2011.00268.x
Viedma, 2014, Comparison of local features from two Spanish hospitals reveals common and specific traits at multiple levels of the molecular epidemiology of metallo-beta-lactamase-producing Pseudomonas spp, Antimicrob Agents Chemother, 58, 2454, 10.1128/AAC.02586-13
Nemec, 2010, Multidrug-resistant epidemic clones among bloodstream isolates of Pseudomonas aeruginosa in the Czech Republic, Res Microbiol, 161, 234, 10.1016/j.resmic.2010.02.002
García-Castillo, 2011, Wide dispersion of ST175 clone despite high genetic diversity of carbapenem-nonsusceptible Pseudomonas aeruginosa clinical strains in 16 Spanish hospitals, J Clin Microbiol, 49, 2905, 10.1128/JCM.00753-11
Samuelsen, 2010, Molecular epidemiology of metallo-beta-lactamase-producing Pseudomonas aeruginosa isolates from Norway and Sweden shows import of international clones and local clonal expansion, Antimicrob Agents Chemother, 54, 346, 10.1128/AAC.00824-09
