Chapter 5 Enzyme kinetics in vitro and in vivo: Michaelis-Menten revisited

Principles of Medical Biology - Tập 4 - Trang 93-146 - 1995
Michael A. Savageau

Tài liệu tham khảo

Alberty, 1959, The rate equation for an enzymatic reaction, Vol. I, 143 Albery, 1977, Efficiency and evolution of enzyme catalysis, Angew. Chem. Int. Ed. Engl., 16, 285, 10.1002/anie.197702851 Bardsley, 1989, Optimal design for model discrimination using the F-test with non-linear biochemical models. Criteria for choosing the number and spacing of experimental points, J. Theoret. Biol., 139, 85, 10.1016/S0022-5193(89)80059-1 Barker, 1978, Biotechnology of immobilized multienzyme systems, Adv. Biochem. Eng., 10, 27, 10.1007/BFb0004470 Benson, 1960, 25 Bertalanffy, 1951 Benalanffy, 1960, Principles and theory of growth, 137 Bloomfield, 1962, Multiple intermediates in steady-state enzyme kinetics II. Systems involving two reactants and two products, J. Amer. Chem. Soc., 84, 4367, 10.1021/ja00882a001 Bloomfield, 1962, Multiple intermediates in steady-state enzyme kinetics III. Analysis of the kinetics of some reactions catalyzed by dehydrogenases, J. Amer. Chem. Soc., 84, 4375, 10.1021/ja00882a002 Bode, 1945 Bondy, 1980 Briggs, 1925, A note on the kinetics of enzyme action, Biochem. J., 19, 338, 10.1042/bj0190338 Brody, 1964 Brown, 1902, Enzyme-action, J. Chem. Soc., 81, 373, 10.1039/CT9028100373 Butcher, 1965, Adenosine 3′,5′-monophosphate in biological materials. II. The measurement of adenosine 3′,5′-monophosphate in tissue and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine, J. Biol. Chem., 240, 4515, 10.1016/S0021-9258(18)97092-4 Clegg, 1984, Properties and metabolism of the aqueous cytoplasm and its boundaries, Am. J. Physiol., 246, R133 Cleland, 1963, The kinetics of enzyme-catalyzed reactions with two or more substrates or products I. Nomenclature and rate equations, Biochim. Biophys. Acta, 67, 104, 10.1016/0926-6569(63)90211-6 Cleland, 1963, The kinetics of enzyme-catalyzed reactions with two or more substrates or products II. Inhibition: nomenclature and theory, Biochim. Biophys. Acta, 67, 173, 10.1016/0926-6569(63)90226-8 Cleland, 1963, The kinetics of enzyme-catalyzed reactions with two or more substrates or products III. Prediction of initial velocity and inhibition patterns by inspection, Biochim. Biophys. Acta, 67, 188, 10.1016/0926-6569(63)90227-X Cleland, 1967, The statistical analysis of enzyme kinetic data, Advan. Enzymol., 29, 1 Cleland, 1967, Enzyme kinetics, Ann. Rev. Biochem., 36, 77, 10.1146/annurev.bi.36.070167.000453 Cleland, 1970, Steady state kinetics, Vol II, 1 1973 Dalziel, 1957, The initial steady state velocities in the evaluation of enzyme-coenzyme-substrate reaction mechanisms, Acta Chem. Scand., 11, 1706, 10.3891/acta.chem.scand.11-1706 Dalziel, 1969, The interpretation of kinetic data for enzyme-catalyzed reactions involving three substrates, Biochem. J., 114, 547, 10.1042/bj1140547 Davis, 1967, Channeling in Neurospora metabolism, 303 Dixon, 1964 Dorf, 1974 Erdi, 1989 Fersht, 1985 Friedrich, 1984 Ginsburg, 1970, Multienzyme systems, Ann. Rev. Biochem., 39, 429, 10.1146/annurev.bi.39.070170.002241 Haldane, 1930 Hammes, 1982 Henri, 1903 Hill, 1977, Does any enzyme follow the Michaelis-Menten equation?, Mol. Cell. Biochem., 15, 173, 10.1007/BF01734107 Hippel, 1974, Non-specific DNA binding of genome regulating proteins as a biological control mechanism: I. The lac operon: Equilibrium aspects, Proc. Natl. Acad. Sci. USA, 71, 4808, 10.1073/pnas.71.12.4808 Huxley, 1924, Constant differential growth-ratios and their significance, Nature, 114, 895, 10.1038/114895a0 Huxley, 1932 Irvine, 1985, Network regulation of the immune response: alternative control points for suppressor modulation of effector lymphocytes, J. Immunol., 134, 2100, 10.4049/jimmunol.134.4.2100 Irvine, 1985, Network regulation of the immune response: modulation of suppressor lymphocytes by alternative signals including contrasuppression, J. Immunol., 134, 2117, 10.4049/jimmunol.134.4.2117 Irvine, 1990, Efficient solution of nonlinear ordinary differential equations expressed in S-system canonical form, SIAM J. Numerical Anal., 27, 704, 10.1137/0727042 Jencks, 1969 Keys, 1963, Coronary heart disease among Minnesota business and professional men followed fifteen years, Circulation, 28, 381, 10.1161/01.CIR.28.3.381 Kirschner, 1971, Kinetic analysis of allosteric enzymes, Curr. Top. Cell. Reg., 4, 167, 10.1016/B978-0-12-152804-1.50011-8 Kohen, 1973, Quantitative aspects of rapid microfluorometry for the study of enzyme reactions and transport mechanisms in single living cells, 207 Kopelman, 1986, Rate processes on fractals: theory, simulations, and experiments, J. Stat. Physics, 42, 185, 10.1007/BF01010846 Koshland, 1966, Comparison of experimental binding data and theoretical models in proteins containing subunits, Biochem., 5, 365, 10.1021/bi00865a047 Kraut, 1988, How do enzymes work?, Science, 242, 533, 10.1126/science.3051385 Kurganov, 1982 Laird, 1969, Dynamics of growth in tumors and in normal organisms, Nat. Cancer Inst. Monog., 30, 15 Lineweaver, 1934, The determination of enzyme dissociation constants, J. Amer. Chem. Soc., 56, 658, 10.1021/ja01318a036 Mason, 1953, Feedback theory—some properties of signal flow graphs, Proc. I.R.E., 41, 1144, 10.1109/JRPROC.1953.274449 Michaelis, 1913, Die Kinetik der Invertinwirkung, Biochem. Z., 49, 333 Monod, 1965, On the nature of allosteric transitions: a plausible model, J. Mol. Biol., 12, 88, 10.1016/S0022-2836(65)80285-6 Needham, 1950 Needham, 1968 Newhouse, 1986, Reaction kinetics on clusters and islands, J. Chem. Phys., 85, 6804, 10.1063/1.451413 Okamoto, 1984, Integrated function of a kinetic proofreading mechanism: steady-state analysis testing internal consistency of data obtained in vivo and in vitro and predicting parameter values, Biochemistry, 23, 1701, 10.1021/bi00303a019 Orland, 1986 Ovadi, 1991, Physiological significance of metabolic channelling, J. Theoret. Biol., 152, 1, 10.1016/S0022-5193(05)80500-4 Pauling, 1957, The probability of errors in the process of synthesis of protein molecules, 597 Peller, 1959, Multiple intermediates in steady state enzyme kinetics I. The mechanism involving a single substrate and product, J. Amer. Chem. Soc., 81, 5907, 10.1021/ja01531a017 Raval, 1962, Malic dehydrogenase II. Kinetic studies of the reaction mechanism, Biochemistry, 1, 263, 10.1021/bi00908a012 Reed, 1966, Macromolecular organization of enzyme systems, Annu. Rev. Biochem., 35, 57, 10.1146/annurev.bi.35.070166.000421 Reiss, 1989 Richards, 1969, The quantitative analysis of growth, Vol. VA, 3 Roberts, 1955, Studies of biosynthesis in E. coli, Carnegie Inst. Wash., Publ. 607 Roels, 1983 Ross, 1988, Stability and constraints, Am. Scientist, 76, 232 Savageau, 1969, Biochemical systems analysis I. Some mathematical properties of the rate law for the component enzymatic reactions, J. Theoret. Biol., 25, 365, 10.1016/S0022-5193(69)80026-3 Savageau, 1969, Biochemical systems analysis II. The steady state solutions for an n-pool system using a power-law approximation, J. Theoret. Biol., 25, 370, 10.1016/S0022-5193(69)80027-5 Savageau, 1970, Biochemical systems analysis III. Dynamic solutions using a power-law approximation, J. Theoret. Biol., 26, 215, 10.1016/S0022-5193(70)80013-3 Savageau, 1971, Concepts relating the behavior of biochemical systems to their underlying molecular properties, Arch. Biochem. Biophys., 145, 612, 10.1016/S0003-9861(71)80021-8 Savageau, 1972, The behavior of intact biochemical control systems, Curr. Top. Cell. Reg., 6, 63, 10.1016/B978-0-12-152806-5.50010-2 Savageau, 1976 Savageau, 1979, Growth of complex systems can be related to the properties of their underlying determinants, Proc. Nat. Acad. Sci. USA, 76, 5413, 10.1073/pnas.76.11.5413 Savageau, 1979, Allometric morphogenesis of complex systems: derivation of the basic equations from from first principles, Proc. Nat. Acad. Sci. USA, 76, 6023, 10.1073/pnas.76.12.6023 Savageau, 1985, Mathematics of organizationally complex systems, Biomed. Biochim. Acta, 44, 839 Savageau, 1991, Reconstructionist molecular biology, New Biologist, 3, 190 Savageau, 1991, Biochemical systems theory: operational differences among variant representations and their significance, J. Theoret. Biol., 151, 509, 10.1016/S0022-5193(05)80367-4 Savageau, 1992, A critique of the enzymologist's test tube, Vol. 3A, 45 Savageau, 1995, Power-law formalism: A canonical nonlinear approach to modeling and analysis Savageau, 1970, Repression of the threonine synthetase system in Escherichia coli, Arch. Biochem. Biophys., 137, 181, 10.1016/0003-9861(70)90425-X Savageau, 1979, Feedforward inhibition in biosynthetic pathways: Inhibition of the aminoacyl-tRNA synthetase by intermediates of the pathway, J. Theoret. Biol., 77, 405, 10.1016/0022-5193(79)90017-1 Savageau, 1982, Power-law approach to modeling biological systems I. Theory, J. Ferment. Technol, 60, 221 Savageau, 1987, Recasting nonlinear differential equations as S-systems: A canonical nonlinear form, Math. Biosci., 87, 83, 10.1016/0025-5564(87)90035-6 Savageau, 1989, Constraints among molecular and systemic properties: implications for physiological genetics, J. Theoret. Biol., 141, 93, 10.1016/S0022-5193(89)80011-6 Savageau, 1987, Biochemical systems theory and metabolic control theory 1. Fundamental similarities and differences, Math. Biosci., 86, 127, 10.1016/0025-5564(87)90007-1 Segal, 1959, The development of enzyme kinetics, Vol I, 1 Segel, 1975 Segel, 1989, The quasi-steady state assumption: a case study in perturbation, SIAM Review, 31, 446, 10.1137/1031091 Shimizu, 1978, Efficiency of two immobilized enzymes acting in sequence, Enzyme Eng., 3, 155, 10.1007/978-1-4757-5163-5_18 Shiraishi, 1992, The tricarboxylic acid cycle in Dictyostelium discoideum I. Formulation of alternative kinetic representations, J. Biol. Chem., 267, 22912, 10.1016/S0021-9258(18)50034-X Shiraishi, 1992, The tricarboxylic acid cycle in Dictyostelium discoideum II. Evaluation of model consistency and robustness, J. Biol. Chem., 267, 22919, 10.1016/S0021-9258(18)50035-1 Shiraishi, 1992, The tricarboxylic acid cycle in Dictyostelium discoideum III. Analysis of steady state and dynamic behavior, J. Biol. Chem., 267, 22926, 10.1016/S0021-9258(18)50036-3 Shiraishi, 1992, The tricarboxylic acid cycle in Dictyostelium discoideum IV. Resolution of discrepancies between alternative methods of analysis, J. Biol. Chem., 267, 22934, 10.1016/S0021-9258(18)50037-5 Shiraishi, 1993, The tricarboxylic acid cycle in Dictyostelium discoideum: Systemic effects of including protein turnover in the current model, J. Biol. Chem., 268, 16917, 10.1016/S0021-9258(19)85283-3 Singer, 1984, Synthesis of the isoleucyl- and valyl-tRNA synthetases and the isoleucine-valine biosynthetic enzymes in a threonine deaminase regulatory mutant of Escherichia coli K-12, J. Mol. Biol., 175, 39, 10.1016/0022-2836(84)90444-3 Sinnott, 1963 Sorribas, 1989, A comparison of variant theories of intact biochemical systems I: Enzyme-enzyme interactions and biochemical systems theory, Math. Biosci., 94, 161, 10.1016/0025-5564(89)90064-3 Sorribas, 1989, A comparison of variant theories of intact biochemical systems 2: Flux oriented and metabolic control theories, Math. Biosci., 94, 195, 10.1016/0025-5564(89)90065-5 Sorribas, 1989, Strategies for representing metabolic pathways within biochemical systems theory: reversible pathways, Math. Biosci., 94, 239, 10.1016/0025-5564(89)90066-7 Srere, 1974, Metabolic compartmentation: symbiotic, organellar, multienzymic, and microenvironmental, Ann. Rev. Microbiol., 28, 61, 10.1146/annurev.mi.28.100174.000425 Srere, 1989 Srivastava, 1986, Metabolite transfer via enzyme-enzyme complexes, Science, 234, 1081, 10.1126/science.3775377 Teissier, 1931, Recherches morphologiques et physiologiques sur la croissance des insectes, Trav. de la Stat. Biol. Roscoff, 9, 27 Teissier, 1937 Truxal, 1955 Umbarger, 1956, Evidence for a negative-feedback mechanism in the biosynthesis of isoleucine, Science, 123, 848, 10.1126/science.123.3202.848 Voit, 1991 Voit, 1984, Analytical solutions to a generalized growth equation, J. Math. Analysis Applic., 103, 380, 10.1016/0022-247X(84)90135-5 Voit, 1987, Accuracy of alternative representations for integrated biochemical systems, Biochem., 26, 6869, 10.1021/bi00395a042 Voit, 1989 Wallach, 1986 Webb, 1963, Vol. I, 29 Weiss, 1987, Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac myocytes, Science, 238, 67, 10.1126/science.2443972 Weisz, 1973, Diffusion and chemical transformation, Science, 179, 433, 10.1126/science.179.4072.433 Wilkinson, 1961, Statistical estimations in enzyme kinetics, Biochem. J., 80, 324, 10.1042/bj0800324 Wladimirow, 1930, Beitrage zur Embryochemie und Embryophysiologie. IV. Mitteilung: Die Anhaufung des Glykogens im Korper des sich entwickelnden Huhnerembryos, Biochem. Z., 224, 69 Woolfolk, 1967, Regulation of glutamine synthetase III. Curnulative feedback inhibition of glutamine synthetase from Escherichia coli, Arch. Biochem. Biophys., 118, 736, 10.1016/0003-9861(67)90412-2 Wong, 1975 Wong, 1962, Kinetic formulations for enzymatic reactions involving two substrates, Can. J. Biochem. Physiol., 40, 763, 10.1139/o62-089 Wright, 1992, Systems analysis of the tricarboxylic acid cycle in Dictyostelium discoideum, J. Biol. Chem., 267, 3101, 10.1016/S0021-9258(19)50700-1 Wyman, 1972, On allosteric models, Curr. Top. Cell. Reg., 6, 209, 10.1016/B978-0-12-152806-5.50013-8 Yates, 1956, Control of pyrimidine biosynthesis in Escherichia coli by a feed-back mechanism, J. Biol. Chem., 221, 757, 10.1016/S0021-9258(18)65188-9 Bertalanffy, 1968 Erdi, 1989 Fersht, 1985 Hammes, 1982 1987, Vols. 1 and 2 Savageau, 1976 Voit, 1991