Chapter 5 Enzyme kinetics in vitro and in vivo: Michaelis-Menten revisited
Tài liệu tham khảo
Alberty, 1959, The rate equation for an enzymatic reaction, Vol. I, 143
Albery, 1977, Efficiency and evolution of enzyme catalysis, Angew. Chem. Int. Ed. Engl., 16, 285, 10.1002/anie.197702851
Bardsley, 1989, Optimal design for model discrimination using the F-test with non-linear biochemical models. Criteria for choosing the number and spacing of experimental points, J. Theoret. Biol., 139, 85, 10.1016/S0022-5193(89)80059-1
Barker, 1978, Biotechnology of immobilized multienzyme systems, Adv. Biochem. Eng., 10, 27, 10.1007/BFb0004470
Benson, 1960, 25
Bertalanffy, 1951
Benalanffy, 1960, Principles and theory of growth, 137
Bloomfield, 1962, Multiple intermediates in steady-state enzyme kinetics II. Systems involving two reactants and two products, J. Amer. Chem. Soc., 84, 4367, 10.1021/ja00882a001
Bloomfield, 1962, Multiple intermediates in steady-state enzyme kinetics III. Analysis of the kinetics of some reactions catalyzed by dehydrogenases, J. Amer. Chem. Soc., 84, 4375, 10.1021/ja00882a002
Bode, 1945
Bondy, 1980
Briggs, 1925, A note on the kinetics of enzyme action, Biochem. J., 19, 338, 10.1042/bj0190338
Brody, 1964
Brown, 1902, Enzyme-action, J. Chem. Soc., 81, 373, 10.1039/CT9028100373
Butcher, 1965, Adenosine 3′,5′-monophosphate in biological materials. II. The measurement of adenosine 3′,5′-monophosphate in tissue and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine, J. Biol. Chem., 240, 4515, 10.1016/S0021-9258(18)97092-4
Clegg, 1984, Properties and metabolism of the aqueous cytoplasm and its boundaries, Am. J. Physiol., 246, R133
Cleland, 1963, The kinetics of enzyme-catalyzed reactions with two or more substrates or products I. Nomenclature and rate equations, Biochim. Biophys. Acta, 67, 104, 10.1016/0926-6569(63)90211-6
Cleland, 1963, The kinetics of enzyme-catalyzed reactions with two or more substrates or products II. Inhibition: nomenclature and theory, Biochim. Biophys. Acta, 67, 173, 10.1016/0926-6569(63)90226-8
Cleland, 1963, The kinetics of enzyme-catalyzed reactions with two or more substrates or products III. Prediction of initial velocity and inhibition patterns by inspection, Biochim. Biophys. Acta, 67, 188, 10.1016/0926-6569(63)90227-X
Cleland, 1967, The statistical analysis of enzyme kinetic data, Advan. Enzymol., 29, 1
Cleland, 1967, Enzyme kinetics, Ann. Rev. Biochem., 36, 77, 10.1146/annurev.bi.36.070167.000453
Cleland, 1970, Steady state kinetics, Vol II, 1
1973
Dalziel, 1957, The initial steady state velocities in the evaluation of enzyme-coenzyme-substrate reaction mechanisms, Acta Chem. Scand., 11, 1706, 10.3891/acta.chem.scand.11-1706
Dalziel, 1969, The interpretation of kinetic data for enzyme-catalyzed reactions involving three substrates, Biochem. J., 114, 547, 10.1042/bj1140547
Davis, 1967, Channeling in Neurospora metabolism, 303
Dixon, 1964
Dorf, 1974
Erdi, 1989
Fersht, 1985
Friedrich, 1984
Ginsburg, 1970, Multienzyme systems, Ann. Rev. Biochem., 39, 429, 10.1146/annurev.bi.39.070170.002241
Haldane, 1930
Hammes, 1982
Henri, 1903
Hill, 1977, Does any enzyme follow the Michaelis-Menten equation?, Mol. Cell. Biochem., 15, 173, 10.1007/BF01734107
Hippel, 1974, Non-specific DNA binding of genome regulating proteins as a biological control mechanism: I. The lac operon: Equilibrium aspects, Proc. Natl. Acad. Sci. USA, 71, 4808, 10.1073/pnas.71.12.4808
Huxley, 1924, Constant differential growth-ratios and their significance, Nature, 114, 895, 10.1038/114895a0
Huxley, 1932
Irvine, 1985, Network regulation of the immune response: alternative control points for suppressor modulation of effector lymphocytes, J. Immunol., 134, 2100, 10.4049/jimmunol.134.4.2100
Irvine, 1985, Network regulation of the immune response: modulation of suppressor lymphocytes by alternative signals including contrasuppression, J. Immunol., 134, 2117, 10.4049/jimmunol.134.4.2117
Irvine, 1990, Efficient solution of nonlinear ordinary differential equations expressed in S-system canonical form, SIAM J. Numerical Anal., 27, 704, 10.1137/0727042
Jencks, 1969
Keys, 1963, Coronary heart disease among Minnesota business and professional men followed fifteen years, Circulation, 28, 381, 10.1161/01.CIR.28.3.381
Kirschner, 1971, Kinetic analysis of allosteric enzymes, Curr. Top. Cell. Reg., 4, 167, 10.1016/B978-0-12-152804-1.50011-8
Kohen, 1973, Quantitative aspects of rapid microfluorometry for the study of enzyme reactions and transport mechanisms in single living cells, 207
Kopelman, 1986, Rate processes on fractals: theory, simulations, and experiments, J. Stat. Physics, 42, 185, 10.1007/BF01010846
Koshland, 1966, Comparison of experimental binding data and theoretical models in proteins containing subunits, Biochem., 5, 365, 10.1021/bi00865a047
Kraut, 1988, How do enzymes work?, Science, 242, 533, 10.1126/science.3051385
Kurganov, 1982
Laird, 1969, Dynamics of growth in tumors and in normal organisms, Nat. Cancer Inst. Monog., 30, 15
Lineweaver, 1934, The determination of enzyme dissociation constants, J. Amer. Chem. Soc., 56, 658, 10.1021/ja01318a036
Mason, 1953, Feedback theory—some properties of signal flow graphs, Proc. I.R.E., 41, 1144, 10.1109/JRPROC.1953.274449
Michaelis, 1913, Die Kinetik der Invertinwirkung, Biochem. Z., 49, 333
Monod, 1965, On the nature of allosteric transitions: a plausible model, J. Mol. Biol., 12, 88, 10.1016/S0022-2836(65)80285-6
Needham, 1950
Needham, 1968
Newhouse, 1986, Reaction kinetics on clusters and islands, J. Chem. Phys., 85, 6804, 10.1063/1.451413
Okamoto, 1984, Integrated function of a kinetic proofreading mechanism: steady-state analysis testing internal consistency of data obtained in vivo and in vitro and predicting parameter values, Biochemistry, 23, 1701, 10.1021/bi00303a019
Orland, 1986
Ovadi, 1991, Physiological significance of metabolic channelling, J. Theoret. Biol., 152, 1, 10.1016/S0022-5193(05)80500-4
Pauling, 1957, The probability of errors in the process of synthesis of protein molecules, 597
Peller, 1959, Multiple intermediates in steady state enzyme kinetics I. The mechanism involving a single substrate and product, J. Amer. Chem. Soc., 81, 5907, 10.1021/ja01531a017
Raval, 1962, Malic dehydrogenase II. Kinetic studies of the reaction mechanism, Biochemistry, 1, 263, 10.1021/bi00908a012
Reed, 1966, Macromolecular organization of enzyme systems, Annu. Rev. Biochem., 35, 57, 10.1146/annurev.bi.35.070166.000421
Reiss, 1989
Richards, 1969, The quantitative analysis of growth, Vol. VA, 3
Roberts, 1955, Studies of biosynthesis in E. coli, Carnegie Inst. Wash., Publ. 607
Roels, 1983
Ross, 1988, Stability and constraints, Am. Scientist, 76, 232
Savageau, 1969, Biochemical systems analysis I. Some mathematical properties of the rate law for the component enzymatic reactions, J. Theoret. Biol., 25, 365, 10.1016/S0022-5193(69)80026-3
Savageau, 1969, Biochemical systems analysis II. The steady state solutions for an n-pool system using a power-law approximation, J. Theoret. Biol., 25, 370, 10.1016/S0022-5193(69)80027-5
Savageau, 1970, Biochemical systems analysis III. Dynamic solutions using a power-law approximation, J. Theoret. Biol., 26, 215, 10.1016/S0022-5193(70)80013-3
Savageau, 1971, Concepts relating the behavior of biochemical systems to their underlying molecular properties, Arch. Biochem. Biophys., 145, 612, 10.1016/S0003-9861(71)80021-8
Savageau, 1972, The behavior of intact biochemical control systems, Curr. Top. Cell. Reg., 6, 63, 10.1016/B978-0-12-152806-5.50010-2
Savageau, 1976
Savageau, 1979, Growth of complex systems can be related to the properties of their underlying determinants, Proc. Nat. Acad. Sci. USA, 76, 5413, 10.1073/pnas.76.11.5413
Savageau, 1979, Allometric morphogenesis of complex systems: derivation of the basic equations from from first principles, Proc. Nat. Acad. Sci. USA, 76, 6023, 10.1073/pnas.76.12.6023
Savageau, 1985, Mathematics of organizationally complex systems, Biomed. Biochim. Acta, 44, 839
Savageau, 1991, Reconstructionist molecular biology, New Biologist, 3, 190
Savageau, 1991, Biochemical systems theory: operational differences among variant representations and their significance, J. Theoret. Biol., 151, 509, 10.1016/S0022-5193(05)80367-4
Savageau, 1992, A critique of the enzymologist's test tube, Vol. 3A, 45
Savageau, 1995, Power-law formalism: A canonical nonlinear approach to modeling and analysis
Savageau, 1970, Repression of the threonine synthetase system in Escherichia coli, Arch. Biochem. Biophys., 137, 181, 10.1016/0003-9861(70)90425-X
Savageau, 1979, Feedforward inhibition in biosynthetic pathways: Inhibition of the aminoacyl-tRNA synthetase by intermediates of the pathway, J. Theoret. Biol., 77, 405, 10.1016/0022-5193(79)90017-1
Savageau, 1982, Power-law approach to modeling biological systems I. Theory, J. Ferment. Technol, 60, 221
Savageau, 1987, Recasting nonlinear differential equations as S-systems: A canonical nonlinear form, Math. Biosci., 87, 83, 10.1016/0025-5564(87)90035-6
Savageau, 1989, Constraints among molecular and systemic properties: implications for physiological genetics, J. Theoret. Biol., 141, 93, 10.1016/S0022-5193(89)80011-6
Savageau, 1987, Biochemical systems theory and metabolic control theory 1. Fundamental similarities and differences, Math. Biosci., 86, 127, 10.1016/0025-5564(87)90007-1
Segal, 1959, The development of enzyme kinetics, Vol I, 1
Segel, 1975
Segel, 1989, The quasi-steady state assumption: a case study in perturbation, SIAM Review, 31, 446, 10.1137/1031091
Shimizu, 1978, Efficiency of two immobilized enzymes acting in sequence, Enzyme Eng., 3, 155, 10.1007/978-1-4757-5163-5_18
Shiraishi, 1992, The tricarboxylic acid cycle in Dictyostelium discoideum I. Formulation of alternative kinetic representations, J. Biol. Chem., 267, 22912, 10.1016/S0021-9258(18)50034-X
Shiraishi, 1992, The tricarboxylic acid cycle in Dictyostelium discoideum II. Evaluation of model consistency and robustness, J. Biol. Chem., 267, 22919, 10.1016/S0021-9258(18)50035-1
Shiraishi, 1992, The tricarboxylic acid cycle in Dictyostelium discoideum III. Analysis of steady state and dynamic behavior, J. Biol. Chem., 267, 22926, 10.1016/S0021-9258(18)50036-3
Shiraishi, 1992, The tricarboxylic acid cycle in Dictyostelium discoideum IV. Resolution of discrepancies between alternative methods of analysis, J. Biol. Chem., 267, 22934, 10.1016/S0021-9258(18)50037-5
Shiraishi, 1993, The tricarboxylic acid cycle in Dictyostelium discoideum: Systemic effects of including protein turnover in the current model, J. Biol. Chem., 268, 16917, 10.1016/S0021-9258(19)85283-3
Singer, 1984, Synthesis of the isoleucyl- and valyl-tRNA synthetases and the isoleucine-valine biosynthetic enzymes in a threonine deaminase regulatory mutant of Escherichia coli K-12, J. Mol. Biol., 175, 39, 10.1016/0022-2836(84)90444-3
Sinnott, 1963
Sorribas, 1989, A comparison of variant theories of intact biochemical systems I: Enzyme-enzyme interactions and biochemical systems theory, Math. Biosci., 94, 161, 10.1016/0025-5564(89)90064-3
Sorribas, 1989, A comparison of variant theories of intact biochemical systems 2: Flux oriented and metabolic control theories, Math. Biosci., 94, 195, 10.1016/0025-5564(89)90065-5
Sorribas, 1989, Strategies for representing metabolic pathways within biochemical systems theory: reversible pathways, Math. Biosci., 94, 239, 10.1016/0025-5564(89)90066-7
Srere, 1974, Metabolic compartmentation: symbiotic, organellar, multienzymic, and microenvironmental, Ann. Rev. Microbiol., 28, 61, 10.1146/annurev.mi.28.100174.000425
Srere, 1989
Srivastava, 1986, Metabolite transfer via enzyme-enzyme complexes, Science, 234, 1081, 10.1126/science.3775377
Teissier, 1931, Recherches morphologiques et physiologiques sur la croissance des insectes, Trav. de la Stat. Biol. Roscoff, 9, 27
Teissier, 1937
Truxal, 1955
Umbarger, 1956, Evidence for a negative-feedback mechanism in the biosynthesis of isoleucine, Science, 123, 848, 10.1126/science.123.3202.848
Voit, 1991
Voit, 1984, Analytical solutions to a generalized growth equation, J. Math. Analysis Applic., 103, 380, 10.1016/0022-247X(84)90135-5
Voit, 1987, Accuracy of alternative representations for integrated biochemical systems, Biochem., 26, 6869, 10.1021/bi00395a042
Voit, 1989
Wallach, 1986
Webb, 1963, Vol. I, 29
Weiss, 1987, Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac myocytes, Science, 238, 67, 10.1126/science.2443972
Weisz, 1973, Diffusion and chemical transformation, Science, 179, 433, 10.1126/science.179.4072.433
Wilkinson, 1961, Statistical estimations in enzyme kinetics, Biochem. J., 80, 324, 10.1042/bj0800324
Wladimirow, 1930, Beitrage zur Embryochemie und Embryophysiologie. IV. Mitteilung: Die Anhaufung des Glykogens im Korper des sich entwickelnden Huhnerembryos, Biochem. Z., 224, 69
Woolfolk, 1967, Regulation of glutamine synthetase III. Curnulative feedback inhibition of glutamine synthetase from Escherichia coli, Arch. Biochem. Biophys., 118, 736, 10.1016/0003-9861(67)90412-2
Wong, 1975
Wong, 1962, Kinetic formulations for enzymatic reactions involving two substrates, Can. J. Biochem. Physiol., 40, 763, 10.1139/o62-089
Wright, 1992, Systems analysis of the tricarboxylic acid cycle in Dictyostelium discoideum, J. Biol. Chem., 267, 3101, 10.1016/S0021-9258(19)50700-1
Wyman, 1972, On allosteric models, Curr. Top. Cell. Reg., 6, 209, 10.1016/B978-0-12-152806-5.50013-8
Yates, 1956, Control of pyrimidine biosynthesis in Escherichia coli by a feed-back mechanism, J. Biol. Chem., 221, 757, 10.1016/S0021-9258(18)65188-9
Bertalanffy, 1968
Erdi, 1989
Fersht, 1985
Hammes, 1982
1987, Vols. 1 and 2
Savageau, 1976
Voit, 1991