Chaotic iterative methods for the linear complementarity problems

Journal of Computational and Applied Mathematics - Tập 96 - Trang 127-138 - 1998
Zhong-Zhi Bai1, D.J. Evans2
1State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, People's Republic of China
2Parallel Algorithms Research Centre, Loughborough University of Technology, Loughborough, Leicestershire, LE11 3TU, UK

Tài liệu tham khảo

Bai, 1993, Parallel iterative methods for large-sparse systems of algebraic equations Bai, 1998, On the monotone convergence of matrix multisplitting relaxation methods for the linear complementarity problem, IMA J. Numer. Anal., 10.1093/imanum/18.4.509 Bai, 1997, Matrix multisplitting relaxation methods for linear complementarity problems, Internat J. Comput. Math., 63, 309, 10.1080/00207169708804569 Bai, 1996, A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations, Computers Math. Appl., 32, 51, 10.1016/S0898-1221(96)00207-6 Bru, 1988, Models of parallel chaotic iteration methods, Linear Algebra Appl., 103, 175, 10.1016/0024-3795(88)90227-3 Frommer, 1989, Convergence of relaxed parallel multisplitting methods, Linear Algebra Appl., 119, 141, 10.1016/0024-3795(89)90074-8 Neumann, 1987, Convergence of parallel multisplitting iterative methods for M-matrices, Linear Algebra Appl., 88/89, 559, 10.1016/0024-3795(87)90125-X O'Leary, 1985, Multi-splittings of matrices and parallel solution of linear systems, SIAM J. Algebraic Discrete Meth., 6, 630, 10.1137/0606062 Varga, 1962 Wang, 1991, On the convergence of the parallel multisplitting AOR algorithm, Linear Algebra Appl., 154/156, 473, 10.1016/0024-3795(91)90390-I