Changing Dynamics of the First, Second and Third Approximations of the Exponential Chaotic System and Their Application in Secure Communication Using Synchronization

Ayub Khan1, Lone Seth Jahanzaib1, Pushali Trikha1
1Department of Mathematics, Jamia Millia Islamia, New Delhi, India

Tóm tắt

In this manuscript a chaotic system with exponential term has been considered and studied. Its basic dynamical properties such as time series, phase plots, Lyapunov exponents, bifurcation diagrams, equilibrium points, Poincare section etc. have been discussed and compared with its first, second and third approximate systems. The main aim of this study is to explore the dynamics of the approximations of the exponential chaotic systems. Also, the controllers have been designed to synchronize the chaotic system and its approximations using a technique “compound combination synchronization” and show its application in the field of secure communication. Simulations have been provided to show the efficacy of the used method.

Tài liệu tham khảo

Broucke, M.: One parameter bifurcation diagram for Chua’s circuit. IEEE Trans. Circuits Syst. 34(2), 208–209 (1987) Chang, D., Li, Z., Wang, M., Zeng, Y.: A novel digital programmable multi-scroll chaotic system and its application in FPGA-based audio secure communication. AEU Int. J. Electron. Commun. 88, 20–29 (2018) Evans, D.J., Cohen, E., Searles, D.J., Bonetto, F.: Note on the Kaplan–Yorke dimension and linear transport coefficients. J. Stat. Phys. 101(1–2), 17–34 (2000) Feki, M.: An adaptive chaos synchronization scheme applied to secure communication. Chaos Solitons Fractals 18(1), 141–148 (2003) Geist, K., Parlitz, U., Lauterborn, W.: Comparison of different methods for computing Lyapunov exponents. Prog. Theor. Phys. 83(5), 875–893 (1990) Guo, W.: Lag synchronization of complex networks via pinning control. Nonlinear Anal. Real World Appl. 12(5), 2579–2585 (2011) Jafari, S., Pham, V.T., Kapitaniak, T.: Multiscroll chaotic sea obtained from a simple 3D system without equilibrium. Int. J. Bifurc. Chaos 26(02), 1650031 (2016) Jafari, S., Sprott, J.C., Molaie, M.: A simple chaotic OW with a plane of equilibria. Int. J. Bifurc. Chaos 26(06), 1650098 (2016) Jiang, C., Liu, S., Luo, C.: A new fractional-order chaotic complex system and its antisynchronization. In: Dr. Wong (ed) Abstract and Applied Analysis, vol. 2014. Hindawi, Cairo (2014) Jiang, C., Zhang, F., Li, T.: Synchronization and antisynchronization of n-coupled fractional-order complex chaotic systems with ring connection. Math. Methods Appl. Sci. 41(7), 2625–2638 (2018) Jimenez-Triana, A., Chen, G., Gauthier, A.: A parameter-perturbation method for chaos control to stabilizing UPOs. IEEE Trans. Circuits Syst. II Express Briefs 62(4), 407–411 (2015) Karavaev, A., Kulminskiy, D., Ponomarenko, V., Prokhorov, M.: An experimental communication scheme based on chaotic time-delay system with switched delay. Int. J. Bifurc. Chaos 25(10), 1550134 (2015) Khan, A., Trikha, P.: Study of earth’s changing polarity using compound difference synchronization. GEM-Int. J. Geomath. 11(1), 7 (2020) Khan, A., Trikha, P., Jahanzaib, L.S.: Dislocated hybrid synchronization via. tracking control and parameter estimation methods with application. Int. J. Model. Simul. 1–11 (2020) Khan, A., Jahanzaib, L.S., Trikha, P.: Analysis of a novel 3-D fractional order chaotic system. In: 2019 International Conference on Power Electronics, Control and Automation (ICPECA), pp. 1–6. IEEE (2019) Khan, A., Jahanzaib, L.S., Trikha, P.: Secure communication: using parallel synchronization technique on novel fractional order chaotic system. IFAC-PapersOnLine 53(7), 307–312 (2020) Khan, A., Jahanzaib, L.S., Trikha, P.: Fractional inverse matrix projective combination synchronization with application in secure communication. In: Proceedings of International Conference on Artificial Intelligence and Applications, pp. 93–101. Springer, Berlin (2020) Khan, A., Trikha, P.: Compound difference anti-synchronization between chaotic systems of integer and fractional order. SN Appl. Sci. 1, 757 (2019). https://doi.org/10.1007/s42452-019-0776-x Khan, A., Trikha, P., Jahanzaib, L.S.: Secure communication: using synchronization on a novel fractional order chaotic system. In: 2019 International Conference on Power Electronics, Control and Automation (ICPECA), pp. 1–5. IEEE (2019) Kousaka, T., Ueta, T., Kawakami, H.: Bifurcation of switched nonlinear dynamical systems. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 46(7), 878–885 (1999) Li, C., Hu, W., Sprott, J.C., Wang, X.: Multistability in symmetric chaotic systems. Eur. Phys. J. Spec. Top. 224(8), 1493–1506 (2015) Li, C., Sprott, J.C.: Multistability in the Lorenz system: a broken butterfly. Int. J. Bifurc. Chaos 24(10), 1450131 (2014) Li, C., Sprott, J.C., Thio, W.: Linearization of the Lorenz system. Phys. Lett. A 379(10–11), 888–893 (2015) Lu, J., Chen, G., Cheng, D., Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12(12), 2917–2926 (2002) Luo, A.C.J.: A theory for synchronization of dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 14(5), 1901–1951 (2009) Mahmoud, E.E., Jahanzaib, L.S., Trikha, P., Alkinani, M.H.: Anti-synchronized quad-compound combination among parallel systems of fractional chaotic system with application. Alex. Eng. J. (2020) Mahmoud, G.M., Mahmoud, E.E.: Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems. Nonlinear Dyn. 61(1–2), 141–152 (2010) Mahmoud, G.M., Mahmoud, E.E.: Lag synchronization of hyperchaotic complex nonlinear systems. Nonlinear Dyn. 67(2), 1613–1622 (2012) Park, J.H.: Adaptive synchronization of hyperchaotic Chen system with uncertain parameters. Chaos Solitons Fractals 26(3), 959–964 (2005) Patra, P.K., Hoover, W.G., Hoover, C.G., Sprott, J.C.: The equivalence of dissipation from Gibbs entropy production with phase-volume loss in ergodic heat-conducting oscillators. Int. J. Bifurc. Chaos 26(05), 1650089 (2016) Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990). https://doi.org/10.1103/PhysRevLett.64.821 Pham, V.T., Jafari, S., Wang, X., Ma, J.: A chaotic system with different shapes of equilibria. Int. J. Bifurc. Chaos 26(04), 1650069 (2016) Qin, W.X., Chen, G.: On the boundedness of solutions of the Chen system. J. Math. Anal. Appl. 329(1), 445–451 (2007) Seyedzadeh, S.M., Mirzakuchaki, S.: A fast color image encryption algorithm based on coupled two-dimensional piecewise chaotic map. Signal Process. 92(5), 1202–1215 (2012) Tabor, M., Weiss, J.: Analytic structure of the Lorenz system. Phys. Rev. A 24(4), 2157 (1981) Trikha, P., Jahanzaib, L.S.: Dynamical analysis of a novel 5-D hyper-chaotic system with no equilibrium point and its application in secure communication. Differ. Geom. Dyn. Syst. 22, 269–288 (2020) Torrieri, D.J.: Principles of Secure Communication Systems. Artech House, INC, Norwood (1985) Trikha, P., Jahanzaib, L.S.: Secure communication: using double compound-combination hybrid synchronization. In: Proceedings of International Conference on Artificial Intelligence and Applications, pp. 81–91. Springer, Berlin (2020) Vaidyanathan, S., Volos, C.K., Kyprianidis, I., Stouboulos, I., Pham, T.: Analysis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. J. Eng. Sci. Technol. Rev. 8(2) (2015) Wang, X., Teng, L., Qin, X.: A novel colour image encryption algorithm based on chaos. Signal Process. 92(4), 1101–1108 (2012) Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16(3), 285–317 (1985) Wu, Y., Noonan, J.P., Yang, G., Jin, H.: Image encryption using the two-dimensional logistic chaotic map. J. Electron. Imaging 21(1), 013014 (2012) Wu, Z., Zhang, X., Zhong, X.: Generalized chaos synchronization circuit simulation and asymmetric image encryption. IEEE Access 7, 37989–38008 (2019) Yu, W.: Passive equivalence of chaos in Lorenz system. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46(7), 876–878 (1999) Zabihi, M., Kiranyaz, S., Rad, A.B., Katsaggelos, A.K., Gabbouj, M., Ince, T.: Analysis of high-dimensional phase space via Poincare section for patient-specific seizure detection. IEEE Trans. Neural Syst. Rehabil. Eng. 24(3), 386–398 (2016) Zhang, H., Liu, D., Wang, Z.: Controlling Chaos: Suppression, Synchronization and Chaotification. Springer, Berlin (2009) Zhang, X., Yu, S., Chen, P., Lü, J., He, J., Lin, Z.: Design and ARM-embedded implementation of a chaotic secure communication scheme based on H. 264 selective encryption. Nonlinear Dyn. 89(3), 1949–1965 (2017)