Changes in podial skeletons during growth in the echinoid Hemicentrotus pulcherrimus

Shinichiro Kawasaki1, Akira Yamanaka2,3, Chisato Kitazawa4
1Yamaguchi University;
2Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi/Japan
3Department of Biology, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
4Biological Institute, Faculty of Education, Yamaguchi University, Yamaguchi, 753-8513, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anstrom JA, Chin JE, Leaf DS, Parks A (1987) Localization and expression of msp130, a primary mesenchyme lineage-specific cell surface protein of the sea urchin embryo. Development 101:255–265

Arakaki Y, Uehara T, Fagoonee I (1998) Comparative studies of the genus Echionmetra from Okinawa and Mauritius. Zool Sci 15:159–168

Benson S, Sucov H, Stephens L, Davidson E, Wilt F (1987) A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression. Dev Biol 10:499–506

Bronstein O, Kroh A, Tautscher B, Liggins L, Haring E (2017) Cryptic speciation in pan-tropical sea urchins: a case study of an edge-of-range population of Tripneustes from the Kermadec Islands. Sci Rep 7(1):1–16

Connolly DM, Desvignes T, Williamson JE (2017) Influence of body size on tube feet morphology and attachment capacity in the sea urchin Holopneustes purpurascens. Mar Biol 164:223

Dubois P, Chen CP (1989) Calcification in echinoderms. In: Jangoux M et al (eds), Echinoderm Studies, vol 3. Balkema, Rotterdam, pp 109–178

Fenner DH (1973) The respiratory adaptations of the podia and ampullae of echinoids (Echinodermata). Biol Bull 145:323–339

Formery L, Orange F, Formery A, Yaguchi S, Lowe CJ, Schubert M, Croce JC (2020) Neural anatomy of echinoid early juveniles and comparison of nervous system organization in echinoderms. J Comp Neurol 529:1135–1156

Kitazawa C, Amemiya S (2007) Micromere-derived signal regulates larval left-right polarity during sea urchin development. J Exp Zool 307A:1–14

Koehl MAR (1982) Mechanical design of spicule-reinforced connective tissue: stiffness. J Exp Biol 98:39–267

Leddy HA, Johnson AS (2000) Walking versus breathing: mechanical differentiation of sea urchin podia corresponds to functional specialization. Biol Bull 198:8–93

Märkel K (1975) Wachsum des coonarskeletes von Paracentrotus lividus Lmk. (Echinodermata, Echinoidea). Zoomorphologie 82:259–280

Morris VB (2009) On the sites of secondary podia formation in a juvenile echinoid: growth of the body types in echinoderms. Dev Genes Evol 219(11–12):597–608

Mortensen TH (1943) III. 3 Camarodonta. II. Echinidæ, Strongyocentrotidæ, Parasaleniidæ, Echinometridæ. A monograph of the echinoidea. C. A. Reitzel publisher, Copenhagen, pp 248–254

Nichols D (1961) A comparative histological study of the tube-feet of two regular echinoids. Q J Micro Sci 102:157–189

Nichols D (1967) Chapter 9 Functional morphology of the water-vascular system. In: Boolootian RA (ed) Physiology of Echinodermata. Interscience Publishers, New York

Noguchi M (1978) Chapter 4 Metamorphosis of sea urchins. In: Japanese society of developmental biologists (eds) Biology of Metamorphosis. Iwanami-shoten, Tokyo, pp 89–115 (in Japanese)

O’loughlin PM, Tavancheh E, Harding C (2016) The Discovery expedition sea cucumbers (Echinodermata: Holothuroidea). Memoirs Museum Victoria 75:53–70

O’loughlin PM, Mackenzie M, Vandenspiegel D, (2013) New sea cucumber species from the seamounts on the Southwest Indian Ocean ridge (Echinodermata: Holothuroidea: Aspidochirotida, Elasipodida, Dendrochirotida). Memoirs Museum Victoria 70:37–50

Ocana Martin A, Tierno de Figueroa JM, Palomino-Morales RJ (2006) Sclerites in different tissue of mediterranean echinodermata. Zool Sci 23:557–564

Okazaki K (1975) Normal development to metamorphosis. In: Cihak G (ed) The sea urchin embryo Biochemistry and Morphogenesis. Springer-Verlag, Berlin Heidelberg, New York, pp 178–232

Ruppert EE, Barnes RD (1994) 18 Echinoderms. Invertebrate Zoology. Harcourt Brace college publisher, New York, pp 920–995

Seilacher A (1979) Constructional morphology of sand dollars. Paleobiology 5(3):191–221

Smith A (2005) Growth and form in echinoids: The evolutionary interplay of plate accretion and plate addition. In: Briggs DEG (ed) Evolving Form and Function: Fossils and Development. Yale Peabody Museum, New Haven

Stricker SA (1985) The ultrastructure and formation of the calcareous ossicles in the body wall of the sea cucumber Leptosynapta clarki (Echinodermata, Holothuroida). Zoomorph 105:209–222

Thompson JR, Paganos P, Benvenuto G, Arnone MI, Oliveri P (2021) Post-metamorphic skeletal growth in the sea urchin Paracentrotus lividus and implications for body plan evolution. EvoDevo 12:3. https://doi.org/10.1186/s13227-021-00174-1

Woo SP, Yasin Z, Tan SH, Kajihara H, Fujita T (2015) Sea cucumbers of the genus Stichopus Brandt, 1835 (Holothuroidea, Stichopodidae) in straits of Malacca with description of a new species. ZooKeys 545:1–26

Woodland W (1906) Studies I spicule formation. IV. The scleroblastic development of the spicules in Cucumariidae; with a note relating to the plate-and-anchor spicules of Synapta inhaerens. Quart J Micr Sci 49:533–559

Woodland W (1907a) Studies in spicule formation. V. The scleroblastic development of the spicules in Ophiuroidea and Echinoidea, and in the genera Antedon and Synapta. Quart J Micr Sci 51:31–43

Woodland W (1907b) Studies in spicule formation. VII. The scleroblastic development of the plate-and-anchor spicules of Synapta, and of the wheel spicules of the auricularia larva. Quart J Micr Sci 51:483–509

Wray GA, Kitazawa C, Miner B (2004) Chapter 4. Culture of echinoderm larvae through metamorphosis. Meth Cell Biol 74:75–86