Changes in Thermal Conductivity of Rocks in the Lithosphere of the West Siberian Basin in the Area of the Tyumen SG-6 Well

Pleiades Publishing Ltd - Tập 59 - Trang 622-632 - 2023
Yu. I. Galushkin1
1Earth Science Museum (Museum of Natural History), Moscow State University, Moscow, Russia

Tóm tắt

Abstract—Numerical reconstructions of the thermal regime of the lithosphere of the West Siberian basin in the Koltogor-Urengoi graben in the vicinity of the Tyumen SG-6 superdeep well are used to analyze the depth distribution of thermal conductivity of basin rocks. Five depth intervals that differ in the pattern of changes in thermal conductivity of rocks are distinguished: permafrost zone, sedimentary section below this zone, zone of anomalous decompaction of rocks, consolidated crust, and mantle. The algorithms for calculating thermal conductivity are considered, and the main factors affecting the depth changes of the latter are determined for each of the five intervals. A sharp decrease in thermal conductivity of rocks at the base of the sedimentary cover and at the basement top in the vicinity of the SG-6 well is associated with rock decompaction due to tectonic fracturing and hydrothermal erosion. The analysis suggests that the stationarity conditions of the process are not observed in optical scanning thermal conductivity measurements and, therefore, this method may overestimate the true thermal conductivity of rocks.

Tài liệu tham khảo

Balobaev, V.T., Geotermiya merzloi zony litosfery Severa Azii (Geothermy of the Frozen Zone of the Lithosphere of Northern Asia), Novosibirsk: Nauka, 1991. Bogoyavlenskii, V.I., Polyakova, I.D., Bogoyavlenskii, I.V., and Budagova, T.A., Hydrocarbon prospects at large depths of offshore and onshore areas in South Kara region, Georesursy Geoenerg. Geopolitika, 2012, vol. 2, no. 6, pp. 1–21. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, 2nd ed., Oxford: Oxford Univ. Press, 1959. Deming, D. and Chapman, D.S., Thermal histories and hydrocarbon generation: Example from Utah-Wyoming thrust belt, AAPG Bull., 1989, vol. 73, no. 12, pp. 1455–1471. Doligez, B., Bessis, F., Burrus, J., et al., Integrated numerical simulation of the sedimentation heat transfer, hydrocarbon formation and fluid migration in a sedimentary basin: The THEMIS model, in Thermal Modelling in Sedimentary Basins, Burrus, J., Ed., Paris: Editions Technip, 1986, pp. 173–195. Duchkov, A.D., Lysak, S.V., Balobaev, V.T., et al., Teplovoe pole nedr Sibiri (Thermal Field of Siberia Subsoil), Novosibirsk: Nauka, 1987. Duchkov, A.D., Sokolova, L.S., Ayunov, D.E., and Zlobina, O.N., Thermal conductivity of sediments in high-latitude West Siberia, Russ. Geol. Geophys., 2013, vol. 54, no. 12, pp. 1522–1528. Ershov, E.D., Geokriologiya SSSR: Zapadnaya Sibir’ (Geocryology of the USSR: Western Siberia), Moscow: Nedra, 1989. Fotiev, S.M., Modern concepts of the evolution of cryogenic areas of West and East Siberia in Pleistocene and Holocene (Report 1), Kriosfera Zemli, 2005, vol. 9, no. 2, pp. 3–22. Fotiev, S.M., Modern concepts of the evolution of cryogenic areas of West and East Siberia in Pleistocene and Holocene (Report 2), Kriosfera Zemli, 2006, vol. 10, no. 2, pp. 3–26. Galushkin, Yu.I., Modelirovanie osadochnykh basseinov i otsenka ikh neftegazonosnosti (Sedimentary Basin Modeling and Assessment of Hydrocarbon Prospects), Moscow: Nauchn. mir., 2007. Galushkin, Yu.I., Non-Standard Problems in Basin Modeling, Cham: Springer, 2016. Galushkin, Yu.I., Thermal history of the lithosphere of the Koltogor–Urengoi graben, West Siberian basin, in the vicinity of the SG-6 well: numerical reconstruction using GALO flat basin modeling system, Izv., Phys. Solid Earth, 2023, vol. 59, no. 4, pp. 604–621. Galushkin, Yu.I., Sitar, K.A., and Frolov, S.V., Permafrost formation and degradation in the Urengoy and Kuyumbinskaya areas: Part 1. Application of GALO basin modeling system, Kriosfera Zemli, 2012a, vol. 16, no. 1, pp. 3–11. Galushkin, Yu.I., Sitar, K.A., and Frolov, S.V., Permafrost formation and degradation in the Urengoy and Kuyumbinskaya areas of Siberia: Part 2. Influence of variations in thermophysical parameters of frozen rocks on temperature and heat flow distributions with depth, Kriosfera Zemli, 2012b, vol. 16, no. 2, pp. 23–29. Gorbachev, V.I., Tyumenskaya sverkhglubokaya skvazhina (SG-6). Rezul’taty i perspektivy (Tyumen Superdeep Borehole (SG-6). Results and Prospects), Perm: KamNIIKIGS, 2018. Gradshtein, I.S. and Ryzhik, I.M., Tablitsy integralov, summ ryadov i proizvedenii (Tables of Integrals, Series and Products), 4th ed., Moscow: Fizmatgiz, 1963. Hofmeister, A., Mantle values of thermal conductivity geotherm from phonon lifetimes, Science, 1999, vol. 283, no. 5408, pp. 1699–1706. Kravchenko, M.N., Resource potential of hydrocarbons of Lower-Middle Jurassic and Pre-Jurassic deep horizons of sedimentary cover in the northern regions of the West Siberian oil and gas province, Extended Abstract of Cand. Sci. (Geol.–Mineral.) Dissertation, Moscow: Moscow State Univ., 2012. Kudryavtsev, V.A., Merzlotovedenie (Geocryology), Moscow: MGU, 1981. Kurchikov, A.R. and Stavitskii, B.P., Geotermiya neftegazonosnykh oblastei Zapadnoi Sibiri (Geothermy of Oil and Gas Bearing Regions of Western Siberia), Moscow: Nedra, 1987. Lachenbruch, A.H., Sass, J.H., Marshall, B.V., et al., Permafrost, heat flow and the geothermal regime at Prudhoe Bay, Alaska, J. Geophys. Res., 1982, vol. 87, no. B11, pp. 9301–9316. McKenzie, D., Jackson, J., and Priestley, K., Thermal structure of oceanic and continental lithosphere, Earth Planet. Sci. Lett., 2005, vol. 233, pp. 337–339. Myasnikova, G.P. and Oksenoid, E.E., Some geological results of ultradeep drilling in West Siberia, Izv. Vyssh. Uchebn. Zaved., Neft’ Gaz, 2012, no. 3 (93), pp. 13–19. Perry, H.K.C., Jaupart, C., Mareschal, J.-C., and Shapiro, N.M., Upper mantle velocity-temperature conversion and composition determined from seismic refraction and heat flow, J. Geophys. Res., 2006, vol. 111, no. B7, Article ID B07301. https://doi.org/10.1029/2005JB003921 Popov, Yu.A., Theoretical models of the method for measuring the thermal properties of rocks based on mobile sources of thermal energy, Part 1, Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 1983, no. 9, pp. 97–103. Popov, Yu.A., Theoretical models of the method for measuring the thermal properties of rocks based on mobile sources of thermal energy, Part 2, Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 1984, no. 2, pp. 81–86. Popov, Yu.A., Problem of quality of initial petrothermophysical and geothermal data in modeling of sedimentary basins and oil-and-gas-bearing systems, EAGE “Geomodel’—2015,” Gelendzhik, 2015. Popov, Yu.A., Ramushkevich, R.A., and Popov, E.Yu., Thermophysical studies of rocks of the section of the Tyumen superdeep well, in Tyumenskaya sverkhglubokaya skvazhina (Tyumen Superdeep Well), Mazur, V.B., Ed., Perm: KamNIIKIGS, 1996, pp. 163–175. Popov, Yu.A., Pribnow, D.F.C., Sass, J.H., et al. Characterization of rock thermal conductivity by high-resolution optical scanning, Geothermics, 1999, vol. 28, pp. 253–276. Popov, Y., Beardsmore, G., Clauser, C., et al., ISRM suggested methods for determining thermal properties of rocks from laboratory tests at atmospheric pressure, Rock Mech. Rock Eng., 2016, vol. 49, no. 10, pp 4179–4207. https://doi.org/10.1007/s00603-016-1070-5 Predtechenskaya, E.A., Shiganova, O.V., and Fomichev, A.S., Catagenetic and hydrochemical anomalies in the Lower-Middle Jurassic oil-and-gas-bearing sediments of West Siberia as indicators of fluid dynamic processes in the zones of disjunctive disturbances, Litosfera, 2009, no. 6, pp. 54–65. Romushkevich, R., Popov, E., Popov, Yu., et al., Thermal properties of West Siberian sediments in application to basin and petroleum systems modeling, Geophys. Res. Abstr. EGU General Assembly, vol. 18, EGU2016-12463, Vienna, 2016, Vienna: EGU, 2016. https://www.researchgate.net/publication/303985431. Schatz, J.F. and Simmons, G., Thermal conductivity of Earth materials at high temperatures, J. Geophys. Res., 1972, vol. 77, no. 35, pp. 6966–6983. Ungerer, Ph., Modeling of petroleum generation and migration, in Applied Petroleum Geochemistry, Bordenave, M.L., Ed., Paris: Technip, 1993, pp. 397–442.