Changes in Growth, Yield, Photosynthetic Pigments, Biochemical Substances, Oxidative Damage, and Antioxidant Activities Induced by Treatment with Different pH of Artificial acid rain in Pumpkin (Cucurbita Moschata)

Gesunde Pflanzen - Tập 73 - Trang 623-637 - 2021
Gufran Ahmad1, Abrar A. Khan1, Heba I. Mohamed2
1Environmental Botany Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
2Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt

Tóm tắt

Acid rain is one of the major environmental problems that causes plant morphological and physiological disorders. But there are few studies about the impact of acid rain on vegetable crops. This work aimed to study the various effects of simulated acid rain (SAR) at different levels of pH (5.0, 4.5, 4.0, 3.5 or 3.0) on growth, yield, pigment content, protein, carbohydrate, water content in leaves, minerals (NPK), oxidative damage and the activity of various antioxidants in pumpkin. The results show that the plant growth, yield, chlorophyll, carotenoids, protein, carbohydrates, leaf water content, NPK in the leaves of the pumpkin crop decreased significantly with increasing levels of acidity of SAR as compared to the untreated set. H2O2 and MDA are increased by SAR treatment which depends on the level of pH value of SAR. The highest value of hydrogen peroxide and malondialdehyde was recorded at pH 3.0 and lower at pH 5.0 of SAR treatment on the pumpkin crop. In contrast, superoxide dismutase, catalase, nitrate reductase and proline contents were accumulated at pH 3.0 and degraded at pH 5.0 of SAR treatment on pumpkin as compared to control. In conclusion, our findings suggest that pumpkin produces more reactive oxygen species (ROS) scavenging SAR stress through the production of enzyme and non-enzyme antioxidant compounds at 3.0 pH. Meanwhile, growth inhibition as well as the photosynthesis of pumpkin and the magnitude of oxidative damage increased as acidity increased (pH 3.0 of SAR).

Tài liệu tham khảo

Abbasi T, Poornima P, Kannadasan T (2013) Acid rain: past, present, and future. Int J Environ Eng 5:229–272 Abd El-Rahman SS, Mohamed HI (2014) Application of benzothiadiazole and Trichoderma harzianum to control faba bean chocolate spot disease and their effect on some physiological and biochemical traits. Acta Physiol Plant 36(2):343–354 Abu-Shahba MS, Mansour MM, Mohamed HI, Sofy MR (2021) Comparative cultivation and biochemical analysis of iceberg lettuce grown in sand soil and hydroponics with or without microbubbles and macrobubbles. J Soil Sci Plant Nutr 21:389–403 Ahmad G, Khan AA (2019a) Pumpkin: horticultural importance and its roles in various forms; a review. Int J Hortic Agric 4:1–6 Ahmad G, Khan AA (2019b) Effect of simulated acid rain and root-knot nematode on plant growth, yield and some biochemical substances in pumpkin crop. J Biol Chem Res 36:92–101 Ahmad G, Khan AA (2019c) Eco-friendly use of fly ash for the management of root-knot nematode and acid rain in pumpkin crop. Int J Biotechnol 8:93–103 Ahmad G, Khan AA, Mohamed HI (2021) Impact of the low and high concentrations of fly ash amended soil on growth, physiological response and yield of pumpkin (Cucurbita moschata Duch. Ex Poiret L.). Environ Sci Pollut Res Int 28:17068–17083 Aly AA, Mohamed HI, Mansour MTM, Omar MR (2013) Suppression of powdery mildew on flax by foliar application of essential oils. Journal of Phytopathology. 161:376–381 Aly AA, Mansour MTM, Mohamed HI (2017) Association of increase in some biochemical components with flax resistance to powdery mildew. Gesunde Pflanz 69(1):47–52 Arti V, Ashish T, Abdullah A (2010) Impact of simulated acid rain of different pH-levels on some major vegetable plants in India. Rep Opin 2:38–40 Bates L, Waldren R, Waldren R (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(3):205–207 Bremner JM, Mulvaney C (1983) Nitrogen-total. In: Methods soil analysis: part 2 chemical microbiological properties. 9, pp 595–624 Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227 Chen J, Wang WH, Liu TW, Wu FH, Zheng HL (2013) Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedlings to sulfuric-rich and nitric-rich simulated acid rain. Plant Physiol Biochem 64:41–51 Chrysargyris A, Xylia P, Botsaris G, Tzortzakis N (2017) Antioxidant and antibacterial activities, mineral and essential oil composition of spearmint ( Mentha spicata L.) affected by the potassium levels. Ind Crop Prod 103:202–221 Clair T, Burns D, Rosas-Pérez I, Blais J, Percy K (2011) Ecosystems. In: Hidy GM, Brook JR, Demerjian KL, Molina LT, Pennell WT, Scheme RD (eds) Technical challenges of multipollutant air quality management, 1st edn. Springer, New York, pp 139–229 Debnath B, Irshad M, Mitra S, Li M, Rizwan HM, Liu S, Qiu D (2018) Acid rain deposition modulates photosynthesis, enzymatic and non-enzymatic antioxidant activities in tomato. Int J Environ Res 12:203–214 Diatta J, Youssef N, Tylman O, Grzebisz W, Markert B, Drobek L, Wünschmann S, Bebek M, Mitko K, Lejwoda P (2021) Acid rain induced leakage of Ca, Mg, Zn, Fe from plant photosynthetic organs—Testing for deciduous and dicotyledons. Ecol Indic 121:107210 Dolatabadian A, Sanavy SAMM, Gholamhoseini M, Joghan AK, Majdi M, Kashkooli AB (2013) The role of calcium in improving photosynthesis and related physiological and biochemical attributes of spring wheat subjected to simulated acid rain. Physiol Mol Biol Plants 19(2):189–198 Dwivedi A, Tripathi B (2007) Pollution tolerance and distribution pattern of plants in surrounding area of coal-fired industries. J Environ Biol 28(2):257–263 El-Beltagi H, Mohamed HI, Megahed B, Gamal M, Safwat G (2018) Evaluation of some chemical constituents, antioxidant, antibacterial and anticancer activities of Beta vulgaris L. root. Frese Environ Bull 27:6369–6378 El-Beltagi H, Mohamed HI, Safwat G, Gamal M, Megahed B (2019b) Chemical composition and biological activity of Physalis peruviana L. Gesunde Pflanz 71:113–122 El-Beltagi HS, Mohamed HI, Elmelegy AA, Eldesoky SE, Safwat G (2019a) Phytochemical screening, antimicrobial, antioxidant, anticancer activities and nutritional values of cactus (Opuntia Ficus Indicia) pulp and peel. Frese Environ Bull 28(2A):1534–1551 El-Beltagi HS, Sofy MR, Aldaej MI, Mohamed HI (2020) Silicon alleviates copper toxicity in flax plants by up-regulating antioxidant defense and secondary metabolites and decreasing oxidative damage. Sustainability 12:4732. https://doi.org/10.3390/su12114732 Foster JR (1990) Influence of pH and plant nutrient status on ion fluxes between tomato plants and simulated acid mists. New Phytol 116:475–485 Gilani SAQ, Basit A, Sajid M, Shah ST, Ullah I, Mohamed HI (2021) Gibberellic acid and boron positively enhance antioxidant activity, phenolic contents, and yield quality in Pyrus communis L. Gesunde Pflanz. https://doi.org/10.1007/s10343-021-00555-5 Gonzalez L, Gonzalez-Vilar M (2001) Determination of relative water content. Kluwer Academic Publishers, , pp 207–221 Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41 Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115(2):251–257 Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611 Irigoyen JJ, Emerich DW, Sanchez-Diaz M (1992) Water stress induced changes in the concentrations of proline and total soluble sugers in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 8:455–460 Jackson M (1967) Soil Chemical Analysis. Prentice Hall of India Pvt, New Delhi, pp 326–338 Jalali M, Naderi E (2012) The impact of acid rain on phosphorus leaching from a sandy loam calcareous soil of western Iran. Environ Earth Sci 66:311–317 Jaworski SV, Maathuis FJM (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80 Kausar S, Khan AA (2009) Interaction of simulated acid rain and seed gall nematode Anguina tritici on wheat. Biol Med 1:100–106 Kausar S, Hussain MA, Khan AA (2010) Response of simulated acid rain on morphological, biochemical and leaf epidermal characteristics of wheat. Trends Biosci 3:34–36 Khan AA, Mustabeen K (2013) Observation of simulated acid rain impact on chickpea plant. Ecoprint 20:79–82 Khan MR, Khan MW (1994) Effects of simulated acid rain and root-knot nematode on tomato. Plant Pathol 43:41–49 Knudsen D, Peterson G, Pratt P (1983) Lithium, sodium, and potassium. In: Methods of soil analysis: part 2 chemical and microbiological properties 9, pp 225–246 Kovacik J, Klejdus B, Backor M, Stork F, Hedbavny J (2011) Physiological responses of root-less epiphytic plants to acid rain. Ecotoxicology 20:348–357 Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang Y, Ma J, Yang J, Zhang X (2017) Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci 8:295. https://doi.org/10.3389/fpls.2017.00295 Liang C, Wang W (2013) Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain. Environ Sci Poll Res 20:8182–8191 Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: methods in enzymology, vol 148. Elsevier, , pp 350–382 Liu H, Yi LT, Yuf SQ, Yin XM (2015) Chlorophyll fluorescence characteristics and the growth response of Elaeocarpus glabripetalus to simulated acid rain. Photosynthetica 53(1):23–28 Liu M, Korpelainen H, Dong L, Yi L (2019) Physiological responses of Elaeocarpus glabripetalus seedlings exposed to simulated acid rain and cadmium. Ecotoxicol Environ Saf 175:118–127 Liu TW, Niu L, Fu B, Chen J, Wu FH, Chen J, Wang WH, Hu WJ, He JX, Zheng HL (2013) A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana. Genome 56:49–60 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275 Madiha Y, Khan AA, Darma ZU (2015) Effect of acid rain on growth of papaya (Carica papaya) and castor (Ricinus communis) plants. J Sci Technol 9:43–37 Mohamed HI, Abd-El Hameed AG (2014) Molecular and biochemical markers of some Vicia faba L. genotype in response to storage insect pests infestation. J Plant Int 9(1):618–626 Mohamed HI, Akladious SA, El-Beltagi HS (2018a) Mitigation the harmful effect of salt stress on physiological, biochemical and anatomical traits by foliar spray with trehalose on wheat cultivars. Frese Environ Bull 27:7054–7065 Mohamed HI, El-Beltagi HS, Aly A, Latif HH (2018b) The role of systemic and non systemic fungicides on the physiological and biochemical parameters in Gossypium hirsutum plant, implications for defense responses. Frese Environ Bull 27:8585–8593 Mohamed HI, Elsherbiny E, Abdelhamid M (2016) Physiological and biochemical responses of Vicia faba plants to foliar application of zinc and iron. Gesunde Pflanz 68:201–212 Moustafa-Farag M, Mohamed H, Mahmoud A, Elkelish A, Misra A, Guy K, Kamran M, Ai S, Zhang M (2020) Salicylic acid stimulates antioxidant defense and osmolyte metabolism to alleviate oxidative stress in watermelons under excess boron. Plants 9:724 Odiyi BO, Bamidele JF (2014) Effects of simulated acid rain on growth and yield of Cassava Manihot esculenta (Crantz). J Agric Sci 6:96–101 Odiyi BO, Eniola AO (2015) The effect of simulated acid rain on plant growth component of cowpea (Vigna unguiculata) L. Walps. Jordan J Biol Sci 8:51–54 Pan T, Li Y, Ma C, Qiu D (2015) Calcium affecting protein expression in longan under simulated acid rain stress. Environ Sci Pollut Res 22:12215–12223 Polishchuk OV, Vodka MV, Belyavskaya NA, Khomochkin AP, Zolotareva EK (2016) The effect of acid rain on ultrastructure and functional parameters of photosynthetic apparatus in pea leaves. Cell Tissue Biol 10:250–257 Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394 Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18 Reis S, Grennfelt P, Klimont Z, Amann M, Apsimon H, Hettelingh J, Holland M, Legall A, Maas R, Posch M et al (2012) From acid rain to climate change. Science 338:1153–1154 Ren X, Zhu J, Liu H, Xu X, Liang C (2018) Response of antioxidative system in rice (Oryza sativa) leaves to simulated acid rain stress. Ecotoxicol Environ Saf 148:851–856 Rodríguez-Sánchez VM, Rosas U, Calva-Vásquez G, Sandoval-Zapotitla E (2020) Does acid rain alter the leaf anatomy and photosynthetic pigments in urban trees? Plants 9:862. https://doi.org/10.3390/plants9070862 Savita D (2013) Acid rain-the major cause of pollution: its causes, effects, and solution. Int Sci Eng Technol 2(8):772–775 Da Silva L, Alves A, Da Silva E, Oliva M (2005a) Effects of simulated acid rain on the growth of five Brazilian tree species and anatomy of the most sensitive species (Joannesia princeps). Aust J Bot 53:789–796 Silva L, Azevedo A, Silva E, Oliva M (2005b) Effects of simulated acid rain on the growth of five Brazilian tree species and anatomy of the most sensitive species (Joannesia princeps). Aust J Bot 53:789–796 Sofy AR, Dawoud RA, Sofy MR, Mohamed HI, Hmed AA, El-Dougdoug NK (2020) Improving regulation of enzymatic and non-enzymatic antioxidants and stress-related gene stimulation in Cucumber mosaic cucumovirus-infected cucumber plants treated with glycine betaine, chitosan and combination. Molecules 25:2341 Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Alnaggar AM, Soliman A, El-Dougdoug NK (2021a) Ameliorating the adverse effects of tomato mosaic tobamovirus infecting tomato plants in Egypt by boosting immunity in tomato plants using zinc oxide nanoparticles. Molecules 26:1337 Sofy AR, Sofy MR, Hmed AA, Dawoud RA, Refaey E, Mohamed HI, El-Dougdoug NK (2021b) Molecular characterization of the Alfalfa mosaic virus infecting Solanum melongena in Egypt and the control of its deleterious effects with melatonin and salicylic acid. Plants 10:459 Sofy MR, Aboseidah AA, Heneidak SA, Ahmed HR (2021c) ACC deaminase containing endophytic bacteria ameliorate salt stress in Pisum sativum through reduced oxidative damage and induction of antioxidative defense systems. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13585-3 Sofy MR, Mohamed HI, Dawood MFA, Abu-Elsaoud AM, Soliman MH (2021d) Integrated usage of arbuscular mycorrhizal fungi and chicken waste biochar as economic potential tools to ameliorate antioxidant activity, osmolyte accumulation and salt endogenous hormone-stressed spinach plants. Arch Argo Soil Sci. https://doi.org/10.1080/03650340.2021.1949709 De Souza TC, Magalhães PC, de Castro EM, Carneiro NP, Padilha FA, Júnior CCG (2014) Aba application to maize hybrids contrasting for drought tolerance: Changes in water parameters and in antioxidant enzyme activity. Plant Growth Regul 73:205–217 Sulandjari DWS (2018) Effects of intermittent acid rain on proline and antioxidant content on medicinal plant “Pereskia bleo”. IOP Conf Series Earth Environ Sci 129:12020 Wang X, Liu Z, Niu L, Fu B (2013) Long-term effects of simulated acid rain stress on a staple forest plant, Pinus massoniana Lamb: a proteomic analysis. Trees 27(1):297–309 Wen K, Liang C, Wang L, Hu G, Zhou Q (2011) Combined effects of lanthanumion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings. Chemosphere 84:601–608 Zhang L, Qin X, Tang J, Liu W, Yang H (2017) Review of arsenic geochemical characteristics and its significance on arsenic pollution studies in karst groundwater, Southwest China. Appl Geochem 77:80–88 Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD (2014) Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 66:647–656 Zhang X, Du Y, Wang L, Zhou Q, Huang X, Sun Z (2015) Combined effects of lanthanum (iii) and acid rain on antioxidant enzyme system in soybean roots. PLoS ONE 10:e134546