Changes in Brain MicroRNAs Contribute to Cholinergic Stress Reactions

Springer Science and Business Media LLC - Tập 40 Số 1-2 - Trang 47-55 - 2010
Ari Meerson1, Luisa P. Cacheaux2, Ki A. Goosens3, Robert M. Sapolsky4, Hermona Soreq5, Daniela Kaufer6
1Department of Biological Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
2Helen Wills Neuroscience Institute, UC Berkeley, 3140 VLSB, Berkeley, CA, 94720-3140, USA
3McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT Building, 46-2171B, Cambridge, MA, USA
4Department of Biological Sciences, Stanford School of Medicine, Stanford University, Stanford, CA, USA
5Department of Biological Chemistry and Interdisciplinary Center of Neural Computation, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
6Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anant, S., Henderson, J. O., Mukhopadhyay, D., Navaratnam, N., Kennedy, S., Min, J., et al. (2001). Novel role for RNA-binding protein CUGBP2 in mammalian RNA editing. CUGBP2 modulates C to U editing of apolipoprotein B mRNA by interacting with apobec-1 and ACF, the apobec-1 complementation factor. Journal of Biological Chemistry, 276, 47338–47351.

Anguelova, E., Boularand, S., Nowicki, J. P., Benavides, J., & Smirnova, T. (2000). Up-regulation of genes involved in cellular stress and apoptosis in a rat model of hippocampal degeneration. Journal of Neuroscience Research, 59, 209–217.

Baek, D., Villen, J., Shin, C., Camargo, F. D., Gygi, S. P., & Bartel, D. P. (2008). The impact of microRNAs on protein output. Nature, 455, 64–71.

Battaglia, M., & Ogliari, A. (2005). Anxiety and panic: from human studies to animal research and back. Neuroscience and Biobehavioral Reviews, 29, 169–179.

Beheshti, B., Braude, I., Marrano, P., Thorner, P., Zielenska, M., & Squire, J. A. (2003). Chromosomal localization of DNA amplifications in neuroblastoma tumors using cDNA microarray comparative genomic hybridization. Neoplasia, 5, 53–62.

Ben-Ari, S., Toiber, D., Sas, A. S., Soreq, H., & Ben-Shaul, Y. (2006). Modulated splicing-associated gene expression in P19 cells expressing distinct acetylcholinesterase splice variants. Journal of Neurochemistry, 97(Suppl 1), 24–34.

Berson, A., Knobloch, M., Hanan, M., Diamant, S., Sharoni, M., Schuppli, D., et al. (2008). Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology. Brain, 131, 109–119.

Chen, K. D., Li, Y. S., Kim, M., Li, S., Yuan, S., Chien, S., et al. (1999). Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. Journal of Biological Chemistry, 274, 18393–18400.

Chen, C. Z., Li, L., Lodish, H. F., & Bartel, D. P. (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science, 303, 83–86.

Dombkowski, A. A., Thibodeau, B. J., Starcevic, S. L., & Novak, R. F. (2004). Gene-specific dye bias in microarray reference designs. FEBS Letters, 560, 120–124.

Espinosa-Oliva, A. M., de Pablos, R. M., Villaran, R. F., Arguelles, S., Venero, J. L., Machado, A., et al. (2009) Stress is critical for LPS-induced activation of microglia and damage in the rat hippocampus. Neurobiology of Aging, in press.

Gattoni, R., Mahe, D., Mahl, P., Fischer, N., Mattei, M. G., Stevenin, J., et al. (1996). The human hnRNP-M proteins: structure and relation with early heat shock-induced splicing arrest and chromosome mapping. Nucleic Acids Research, 24, 2535–2542.

Gilboa-Geffen, A., Lacoste, P. P., Soreq, L., Cizeron-Clairac, G., Le Panse, R., Truffault, F., et al. (2007). The thymic theme of acetylcholinesterase splice variants in myasthenia gravis. Blood, 109, 4383–4391.

He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature, 435, 828–833.

Hebert, S. S., Horre, K., Nicolai, L., Bergmans, B., Papadopoulou, A. S., Delacourte, A., et al. (2009). MicroRNA regulation of Alzheimer's amyloid precursor protein expression. Neurobiology of Disease, 33, 422–428.

Hirata, R., Matsumoto, M., Judo, C., Yamaguchi, T., Izumi, T., Yoshioka, M., et al. (2009). Possible relationship between the stress-induced synaptic response and metaplasticity in the hippocampal CA1 field of freely moving rats. Synapse, 63, 549–556.

Inestrosa, N. C., Alvarez, A., Perez, C. A., Moreno, R. D., Vicente, M., Linker, C., et al. (1996). Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme. Neuron, 16, 881–891.

Kaufer, D., Friedman, A., Seidman, S., & Soreq, H. (1998). Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature, 393, 373–377.

Kenney, J. W., & Gould, T. J. (2008). Modulation of hippocampus-dependent learning and synaptic plasticity by nicotine. Molecular Neurobiology, 38, 101–121.

Kluiver, J., van den Berg, A., de Jong, D., Blokzijl, T., Harms, G., Bouwman, E., et al. (2007). Regulation of pri-microRNA BIC transcription and processing in Burkitt lymphoma. Oncogene, 26, 3769–3776.

Krek, A., Grun, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., et al. (2005). Combinatorial microRNA target predictions. Nature Genetics, 37, 495–500.

Laneve, P., Di Marcotullio, L., Gioia, U., Fiori, M. E., Ferretti, E., Gulino, A., et al. (2007). The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 7957–7962.

Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.

Li, Q. J., Chau, J., Ebert, P. J., Sylvester, G., Min, H., Liu, G., et al. (2007). miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell, 129, 147–161.

Liang, Y., Ridzon, D., Wong, L., & Chen, C. (2007). Characterization of microRNA expression profiles in normal human tissues. BMC Genomics, 8, 166.

Makeyev, E. V., Zhang, J., Carrasco, M. A., & Maniatis, T. (2007). The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell, 27, 435–448.

Maniataki, E., & Mourelatos, Z. (2005). A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes and Development, 19, 2979–2990.

Martinez, N., Drescher, B., Riehle, H., Cullmann, C., Vornlocher, H. P., Ganser, A., et al. (2004). The oncogenic fusion protein RUNX1–CBFA2T1 supports proliferation and inhibits senescence in t(8;21)-positive leukaemic cells. BMC Cancer, 4, 44.

Matigian, N., Windus, L., Smith, H., Filippich, C., Pantelis, C., McGrath, J., et al. (2007). Expression profiling in monozygotic twins discordant for bipolar disorder reveals dysregulation of the WNT signalling pathway. Molecular Psychiatry, 12, 815–825.

McEvoy, J. P., & Allen, T. B. (2002). The importance of nicotinic acetylcholine receptors in schizophrenia, bipolar disorder and Tourette's syndrome. Current Drug Targets—CNS & Neurological Disorders, 1, 433–442.

McEwen, B. S. (1999). Stress and hippocampal plasticity. Annual Review of Neuroscience, 22, 105–122.

McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87, 873–904.

Meshorer, E., & Soreq, H. (2006). Virtues and woes of AChE alternative splicing in stress-related neuropathologies. Trends in Neurosciences, 29, 216–224.

Meshorer, E., Bryk, B., Toiber, D., Cohen, J., Podoly, E., Dori, A., et al. (2005). SC35 promotes sustainable stress-induced alternative splicing of neuronal acetylcholinesterase mRNA. Molecular Psychiatry, 10, 985–997.

Niwa, R., Zhou, F., Li, C., & Slack, F. J. (2008). The expression of the Alzheimer's amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans. Developmental Biology, 315, 418–425.

Otto, T., & Eichenbaum, H. (1992). Neuronal activity in the hippocampus during delayed non-match to sample performance in rats: Evidence for hippocampal processing in recognition memory. Hippocampus, 2, 323–334.

Plasterk, R. H. (2006). Micro RNAs in animal development. Cell, 124, 877–881.

Raymond, C. K., Roberts, B. S., Garrett-Engele, P., Lim, L. P., & Johnson, J. M. (2005). Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA New York, NY, 11, 1737–1744.

Saeed, A. I., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N., et al. (2003). TM4: a free, open-source system for microarray data management and analysis. Biotechniques, 34, 374–378.

Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439, 283–289.

Shytle, R. D., Silver, A. A., Sheehan, K. H., Sheehan, D. V., & Sanberg, P. R. (2002). Neuronal nicotinic receptor inhibition for treating mood disorders: Preliminary controlled evidence with mecamylamine. Depression and Anxiety, 16, 89–92.

Simon, D. J., Madison, J. M., Conery, A. L., Thompson-Peer, K. L., Soskis, M., Ruvkun, G. B., et al. (2008). The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell, 133, 903–915.

Sohn, K. C., Lee, K. Y., Park, J. E., & Do, S. I. (2004). OGT functions as a catalytic chaperone under heat stress response: A unique defense role of OGT in hyperthermia. Biochemical and Biophysical Research Communications, 322, 1045–1051.

Sood, P., Krek, A., Zavolan, M., Macino, G., & Rajewsky, N. (2006). Cell-type-specific signatures of microRNAs on target mRNA expression. Proceedings of the National Academy of Sciences of the United States of America, 103, 2746–2751.

Soreq, H., & Seidman, S. (2001). Acetylcholinesterase—New roles for an old actor. Nature Reviews Neuroscience, 2, 294–302.

Soret, J., Gattoni, R., Guyon, C., Sureau, A., Popielarz, M., Le Rouzic, E., et al. (1998). Characterization of SRp46, a novel human SR splicing factor encoded by a PR264/SC35 retropseudogene. Molecular and Cellular Biology, 18, 4924–4934.

Stamm, S., Ben-Ari, S., Rafalska, I., Tang, Y., Zhang, Z., Toiber, D., et al. (2005). Function of alternative splicing. Gene, 344, 1–20.

Thai, T.-H., Calado, D. P., Casola, S., Ansel, K. M., Xiao, C., Xue, Y., et al. (2007). Regulation of the germinal center response by MicroRNA-155. Science, 316, 604–608.

Vreugdenhil, E., Verissimo, C. S., Mariman, R., Kamphorst, J. T., Barbosa, J. S., Zweers, T., et al. (2009). MicroRNAs miR-18 and miR-124a downregulate the glucocorticoid receptor: Implications for glucocorticoid responsiveness in the brain. Endocrinology, 150, 2220–2228.

Vyas, A., Mitra, R., Shankaranarayana Rao, B. S., & Chattarji, S. (2002). Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. Journal of Neuroscience, 22, 6810–6818.

Walker, D. L., & Davis, M. (2008). Role of the extended amygdala in short-duration versus sustained fear: A tribute to Dr. Lennart Heimer. Brain Structure and Function, 213, 29–42.

Witke, W. (2004). The role of profilin complexes in cell motility and other cellular processes. Trends in Cell Biology, 14, 461–469.

Wood, G. E., Young, L. T., Reagan, L. P., & McEwen, B. S. (2003). Acute and chronic restraint stress alter the incidence of social conflict in male rats. Hormones and Behavior, 43, 205–213.

Wu, J. Y., Kar, A., Kuo, D., Yu, B., & Havlioglu, N. (2006). SRp54 (SFRS11), a regulator for tau exon 10 alternative splicing identified by an expression cloning strategy. Molecular and Cellular Biology, 26, 6739–6747.