Change point detection of flood events using a functional data framework

Advances in Water Resources - Tập 137 - Trang 103522 - 2020
Mohamed Ali Ben Alaya1, Camille Ternynck2, Sophie Dabo-Niang3, Fateh Chebana4, Taha B.M.J. Ouarda4
1Pacific Climate Impacts Consortium, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W2Y2, Canada
2Univ. Lille, CHU Lille, EA 2694 - Santé publique: épidémiologie et qualité des soins, F-59000 Lille, France
3Laboratoire Paul Painlevé UMR CNRS 8524, INRIA-MODAL, Université de Lille, France
4INRS-ETE, 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada

Tài liệu tham khảo

Aue, 2009, Estimation of a change-point in the mean function of functional data, J. Multivar. Anal., 100, 2254, 10.1016/j.jmva.2009.04.001 Ben Alaya, 2014, Probabilistic gaussian copula regression model for multisite and multivariable downscaling, J. Clim., 27, 3331, 10.1175/JCLI-D-13-00333.1 Berkes, 2009, Detecting changes in the mean of functional observations, J. R. Stat. Soc., 71, 927, 10.1111/j.1467-9868.2009.00713.x Blöschl, 2017, Changing climate shifts timing of European floods, Science, 357, 588, 10.1126/science.aan2506 Chebana, 2012, Exploratory functional flood frequency analysis and outlier detection, Water Resour. Res., 48, 10.1029/2011WR011040 Collins, 2013 Dabo-Niang, 2010, Spatial mode estimation for functional random fields with application to bioturbation problem, Stoch. Environ. Res. Risk Assess., 24, 487, 10.1007/s00477-009-0339-6 Easterling, 1995, A new method for detecting undocumented discontinuities in climatological time series, Int. J. Climatol., 15, 369, 10.1002/joc.3370150403 Fischer, 2010, Quantization and clustering with Bregman divergences, J. Multivar. Anal., 101, 2207, 10.1016/j.jmva.2010.05.008 Fraiman, 2014, Detecting trends in time series of functional data: a study of Antarctic climate change, Can. J. Stat., 42, 597, 10.1002/cjs.11231 Goudie, 2006, Global warming and fluvial geomorphology, Geomorphology, 79, 384, 10.1016/j.geomorph.2006.06.023 Hall, 2006, On properties of functional principal components analysis, J. R. Stat. Soc., 68, 109, 10.1111/j.1467-9868.2005.00535.x Hannah, 2000, An approach to hydrograph classification, Hydrol. Processes, 14, 317, 10.1002/(SICI)1099-1085(20000215)14:2<317::AID-HYP929>3.0.CO;2-T Hurrell, 1997, Decadal variations in climate associated with the North Atlantic Oscillation, 69 Kingston, 2011, Uncertainty in climate change projections of discharge for the Mekong River Basin, Hydrol. Earth Syst. Sci., 15, 1459, 10.5194/hess-15-1459-2011 Koutsoyiannis, 2015, Negligent killing of scientific concepts: the stationarity case, Hydrol. Sci. J., 60, 1174, 10.1080/02626667.2014.959959 Kundzewicz, 2004, Change detection in hydrological records—a review of the methodology/revue méthodologique de la détection de changements dans les chroniques hydrologiques, Hydrol. Sci. J., 49, 7, 10.1623/hysj.49.1.7.53993 Larabi, 2018, Multi-Criteria process-based calibration using functional data analysis to improve hydrological model realism, Water Resour. Manag., 32, 195, 10.1007/s11269-017-1803-6 Masselot, 2016, Streamflow forecasting using functional regression, J. Hydrol., 538, 754, 10.1016/j.jhydrol.2016.04.048 Montanari, 2014, Modeling and mitigating natural hazards: stationarity is immortal!, Water Resour. Res., 50, 9748, 10.1002/2014WR016092 Ramsay, 2007 Requena, 2018, A functional framework for flow-duration-curve and daily streamflow estimation at ungauged sites, Adv. Water Resour., 113, 328, 10.1016/j.advwatres.2018.01.019 Rogers, 1997, North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability of northern Europe, J. Clim., 10, 1635, 10.1175/1520-0442(1997)010<1635:NASTVA>2.0.CO;2 Seidou, 2007, Recursion-based multiple changepoint detection in multiple linear regression and application to river streamflows, Water Resour. Res., 43, 10.1029/2006WR005021 Serinaldi, 2015, Stationarity is undead: uncertainty dominates the distribution of extremes, Adv. Water Resour., 77, 17, 10.1016/j.advwatres.2014.12.013 Serinaldi, 2018, Unsurprising surprises: the frequency of record-breaking and overthreshold hydrological extremes under spatial and temporal dependence, Water Resour. Res., 54, 6460, 10.1029/2018WR023055 Solow, 1987, Testing for climate change: an application of the two-phase regression model, J. Clim. Appl. Meteorol., 26, 1401, 10.1175/1520-0450(1987)026<1401:TFCCAA>2.0.CO;2 Suhaila, 2017, Spatial and temporal variabilities of rainfall data using functional data analysis, Theor. Appl. Climatol., 129, 229, 10.1007/s00704-016-1778-x Ternynck, 2016, Streamflow hydrograph classification using functional data analysis, J. Hydrometeorol., 17, 327, 10.1175/JHM-D-14-0200.1 Vincent, 1998, A technique for the identification of inhomogeneities in Canadian temperature series, J. Clim., 11, 1094, 10.1175/1520-0442(1998)011<1094:ATFTIO>2.0.CO;2 Wong, 2006, Change-point analysis of hydrological time series using grey relational method, J. Hydrol., 324, 323, 10.1016/j.jhydrol.2005.10.007 Zhang, 2011, Testing the structural stability of temporally dependent functional observations and application to climate projections, Electron. J. Stat., 5, 1765, 10.1214/11-EJS655